
ADAPTIVE STOPPING FOR FAST PARTICLE SMOOTHING

Ehsan Taghavi?, Fredrik Lindsten†, Lennart Svensson? and Thomas B. Schön†

? Department of Signals and Systems, Chalmers University of Technology, Göteborg, Sweden
†Division of Automatic Control, Linköping University, Linköping, Sweden

ABSTRACT

Particle smoothing is useful for offline state inference and pa-
rameter learning in nonlinear/non-Gaussian state-space models.
However, many particle smoothers, such as the popular forward fil-
ter/backward simulator (FFBS), are plagued by a quadratic computa-
tional complexity in the number of particles. One approach to tackle
this issue is to use rejection-sampling-based FFBS (RS-FFBS),
which asymptotically reaches linear complexity. In practice, how-
ever, the constants can be quite large and the actual gain in com-
putational time limited. In this contribution, we develop a hybrid
method, governed by an adaptive stopping rule, in order to exploit
the benefits, but avoid the drawbacks, of RS-FFBS. The resulting
particle smoother is shown in a simulation study to be considerably
more computationally efficient than both FFBS and RS-FFBS.

Index Terms— Sequential Monte Carlo, particle smoothing,
backward simulation.

1. INTRODUCTION

Consider a general nonlinear/non-Gaussian state-space model (SSM),
with latent state xt | xt−1 ∼ f(xt | xt−1) and observation
yt | xt ∼ g(yt | xt). We consider the problem of state smoothing,
i.e. to infer xt for t ≤ T , given the collection up to time T of ob-
servations denoted as y1:T = (y1, . . . , yT). More generally, we are
interested in finding the joint smoothing distribution p(x1:T | y1:T),
i.e. the posterior distribution of the latent state sequence x1:T , con-
ditionally on the observed data.

Two decades of work on sequential Monte Carlo (SMC) meth-
ods have enabled inference in SSMs beyond the linear Gaussian
case [1, 2]. Several SMC-based smoothing algorithms, i.e., parti-
cle smoothers (PS), have been presented in the literature. These in-
clude forward filtering/backward smoothing (FFBSm) [3], two-filter
smoothing [4, 5] and Markov chain Monte Carlo (MCMC) smooth-
ing [6, 7, 8]. However, it remains a major challenge to develop accu-
rate and computationally efficient methods for particle smoothing. In
this paper, we are concerned with the forward filter/backward sim-
ulator (FFBS) [9, 10]. This method addresses the joint smoothing
problem by first running a forward (in time) particle filter (PF) with
N particles, followed by a backward simulation of M trajectories
{x̃j1:T }

M
j=1 (see Section 2). These backward trajectories can be seen

as approximate draws from p(x1:T | y1:T).
The computational complexity of FFBS is O(MN), which

can be prohibitive for many applications. However, [11] proposed
a modified FFBS in which rejection sampling (RS) is used in an
internal step of the algorithm, leading to the RS-FFBS algorithm.

The second and the fourth authors were supported by: the project Cal-
ibrating Nonlinear Dynamical Models (Contract number: 621-2010-5876)
funded by the Swedish Research Council and CADICS, a Linneaus Center
also funded by the Swedish Research Council.

This modification does not introduce any additional approximations,
retaining the good performance of FFBS, but it can be useful in
reducing its computational complexity. Indeed, for M = N , [11]
shows that RS-FFBS reaches O(N) complexity as N → ∞. In
practice, however, RS-FFBS often requires more computational
time than standard FFBS. This is due to the fact that in performing
RS-FFBS, some of the particles take a long time to handle because
they have very low acceptance probabilities.

To alleviate this, we propose a hybrid smoother, which mixes
RS-FFBS with standard FFBS. The method starts out as an RS-FFBS
at each time step, but switches to FFBS when the former method is
perceived as being too slow. To determine when to switch, we pro-
pose two different stopping rules, one simple deterministic rule and
one adaptive rule. As RS-FFBS, the proposed method does not intro-
duce any additional approximations. Indeed, the proposed method is
equivalent to FFBS and to RS-FFBS in terms of accuracy, but it has
a lower computational cost than both of them.

There exist several related contributions, aiming at reducing the
computational complexity of various PS. Numerical approximations
are used by [12] to reduce the complexity of FFBSm from O(N2)
to O(N logN). In [13], a modified FFBS is proposed, similar to
RS-FFBS but with MCMC moves instead of RS. Another approach
has been proposed by [4], the modified two-filter smoother, which
uses a specific form of importance sampling to reach linear com-
putational complexity. Contrary to RS-FFBS and the present work,
however, these methods all introduce some additional approxima-
tions and/or modifications to the original algorithms.

We write m : n for the set {m, m+ 1, . . . , n}, Cat({pi}ni=1)
with

∑
i pi = 1 is the categorical (i.e. discrete) probability distribu-

tion on 1 : n with probabilities {pi}ni=1 and U(a, b) is the uniform
distribution on the interval [a, b].

2. FORWARD FILTERING/BACKWARD SIMULATION

The FFBS algorithm [9, 10] can be used to generate approximate
draws from the joint smoothing distribution. The method is a for-
ward/backward procedure. The first step is to apply a PF to the whole
dataset (see e.g. [1, 2]). Hence, for each time t ∈ 1 : T , we assume
that we have access to a weighted particle system {xit, wi

t}Ni=1, defin-
ing a point-mass approximation of the filtering distribution at time t,

p̂(dxt | y1:t) ,
N∑
i=1

wi
tδxi

t
(dxt), (1)

where δz(·) is a Dirac point-mass located at the point z. The FFBS
relies on a factorization of the smoothing density according to
p(x1:T | y1:T) = p(xT | y1:T)

∏T−1
t=1 p(xt | xt+1:T , y1:T), where

p(xt | xt+1:T , y1:T) ∝ f(xt+1 | xt)p(xt | y1:t). By plugging the
PF approximation (1) into this expression, we obtain a point mass

6293978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Algorithm 1 FFBS (at time t) [9]

Input: Partial backward trajectories {x̃jt+1:T }
M
j=1.

Output: Augmented backward trajectories {x̃jt:T }
M
j=1.

1: for j = 1 to M do
2: Compute vjt =

∑N
`=1 w

`
tf(x̃jt+1 | x`t).

3: For i ∈ 1 : N , compute w̃i,j
t|T = wi

tf(x̃jt+1 | xit)/v
j
t .

4: Sample I(j) ∼ Cat({w̃i,j
t|T }

N
i=1).

5: Set x̃jt = x
I(j)
t .

6: end for

approximation of the backward kernel,

p̂(dxt | xt+1, y1:T) ,
N∑
i=1

wi
tf(xt+1 | xit)∑

l w
l
tf(xt+1 | xlt)

δxi
t
(dxt). (2)

It follows that we can generate a backward trajectory by sampling
x̃T ∼ p̂(dxT | y1:T) and then, for t = T − 1, . . . , 1, sample
x̃t ∼ p̂(dxt | x̃t+1, y1:T). The procedure is repeated M times to
generate a collection of backward trajectories {x̃j1:T }

M
j=1 approxi-

mately distributed according to p(x1:T | y1:T). One time step of the
FFBS is summarized in Algorithm 1.

The bottleneck of the FFBS is the computation of the smoothing
weights {w̃i,j

t|T }
N
i=1 (Row 3 in Algorithm 1) for j ∈ 1 : M , yielding

O(MN) complexity. These weights are used to sample the variable
I(j) at Row 4 of Algorithm 1, where I(j) is the index of the forward
filter particle that is to be appended to the jth backward trajectory.
To avoid an exhaustive evaluation of these weights, [11] suggested
to instead sample I(j) using rejection sampling (RS).

Assume that the transition density function is bounded from
above, f(xt+1 | xt) ≤ ρ, which is true in many situations. We
can then let the filter weights define a proposal distribution, i.e. we
sample I(j) ∼ Cat({wi

t}Ni=1). The target distribution is categorical
with probabilities {w̃i,j

t|T }
N
i=1. The RS acceptance probability is

given by the ratio between the target and the proposal probabilities,

w̃
I(j),j

t|T

w
I(j)
t

∝
f(x̃jt+1 | x

I(j)
t)

ρ
≤ 1. (3)

It follows that the proposed sample should be accepted with proba-
bility f(x̃jt+1 | x

I(j)
t)/ρ, otherwise it is rejected and a new sample

is generated. One time step of RS-FFBS is given in Algorithm 2.

3. AN ADAPTIVE STOPPING RULE FOR RS-FFBS

3.1. RS-FFBS with early stopping

The rationale for using RS within the FFBS is that the RS-FFBS
sampler can be shown to reach linear computational complexity as
the number of particles tend to infinity [11]. However, we note that
there is no upper bound on the number of times that the while-loop
in Algorithm 2 may be executed. It has been observed in practice
that the computational time of Algorithm 2 in fact can be larger than
that of Algorithm 1 [14, 13].

Since the RS acceptance probability depends on xt+1, different
backward trajectories get different probabilities of acceptance. The
trajectories with high acceptance probabilities are typically accepted
early in the process, whereas the trajectories with low probabilities
can remain for many iterations. That is, most of the time required by
RS-FFBS is spent on just a few particles. This has the effect that the

Algorithm 2 Rejection sampling FFBS (at time t) [11]

Input: Partial backward trajectories {x̃jt+1:T }
M
j=1.

Output: Augmented backward trajectories {x̃jt:T }
M
j=1.

1: k ← 0
2: L0 ← {1 : M}.
3: while Lk is not empty do
4: mk ← cardinality(Lk).
5: δ ← ∅.
6: Sample independently {C(`)}mk

`=1 ∼ Cat({wi
t}Ni=1).

7: Sample independently {U(`)}mk
`=1 ∼ U(0, 1).

8: for ` = 1 to mk do
9: if U(`) ≤ f(x̃

Lk(`)
t+1 | xC(`)

t)/ρ then
10: I(Lk(`))← C(`).
11: δ ← δ ∪ {Lk(`)}.
12: end if
13: end for
14: Lk+1 ← Lk \ δ.
15: k ← k + 1.
16: end while
17: For j ∈ 1 : M , set x̃jt = x

I(j)
t .

Algorithm 3 RS-FFBS with early stopping

Input: Forward filter particle system {xit, wi
t}Ni=1 for t ∈ 1 : T .

Output: Backward trajectories {x̃j1:T }
M
j=1.

1: Sample independently {I(j)}Mj=1 ∼ Cat
(
{wi

T }Ni=1

)
.

2: Set x̃jT = x
I(j)
T for j ∈ 1 : M .

3: for t = T − 1 to 1 do
4: k ← 0.
5: L0 ← {1 : M}.
6: while Stopping criterion is not met and Lk is not empty do
7: Run one iteration of RS (line 4 to 14 in Algorithm 2).
8: k ← k + 1.
9: end while

10: if Lk is not empty then
11: Sample I(j) for j ∈ Lk using FFBS (Algorithm 1).
12: end if
13: Set x̃jt = x

I(j)
t for j ∈ 1 : M .

14: end for

cardinality of Lk decreases fast in the beginning, but it can linger for
a long time close to zero.

To speed up the algorithm, we propose a hybrid strategy in
which we run the RS-loop for a certain number of iterations, and
then switch to standard FFBS for the remaining particles (i.e. by
making an exhaustive evaluation of the remaining weights). The
general method based on this idea, RS-FFBS with early stopping, is
given in Algorithm 3.

It remains to determine an appropriate stopping criterion. The
family of methods given by Algorithm 3 can be characterized by a
sequence K1:T , where Kt is the maximum number of iterations of
the RS-loop, allowed at time t. This sequence of stopping times
can either be specified a priori or computed online as the sampler
progresses.

The first stopping rule that we propose is a very simple one,
namely to set Kt ≡ K̄ for some constant K̄. That is, when running
the RS-FFBS, we allow for a maximum number of K̄ RS-iterations,
before the RS-loop is stopped and FFBS is employed for the remain-
ing particles. We refer to this deterministic stopping rule as Sdet. It is

6294

instructive to note that our hybrid strategy (naturally) contains both
FFBS and RS-FFBS as special cases, by taking K̄ = 0 and K̄ =∞,
respectively. Hence, it is reasonable to assume that the additional de-
gree of freedom provided by the choice of K1:T can be used to find
an, in some sense, optimal trade-off between the two basic methods.

Due to its simplicity, we believe that Sdet can be of particular
practical interest. In a numerical evaluation in Section 4, it is shown
that this stopping rule indeed can reduce the computation time quite
considerably, compared to both FFBS and RS-FFBS. However, an
issue with Sdet is how to choose K̄, which is likely to be problem
dependent. Furthermore, since we run the RS-loop for each time
t ∈ 1 : T , it might be the case that we want to use different values
for Kt for different t, due to variations in the data. To address these
issues, we now turn to the derivation of an adaptive stopping rule,
which tunes itself by monitoring the number of accepted samples in
the RS-loop.

3.2. Optimal stopping

To find an adaptive stopping rule, we start by investigating the prob-
lem of minimizing the computational time of Algorithm 3 w.r.t. the
sequence K1:T . We make the following assumption.

(A1) Let N be the number of forward filter particles. Assume that
there exist positive constants d0 and d1, such that; (i) the computa-
tional cost of running one iteration of the RS-loop in Algorithm 2
with m backward trajectories is d0m; (ii) the computational cost
of running FFBS (Algorithm 1) with m backward trajectories is
Nd1m.

The constants d0 and d1 are implementation dependent, but can
be computed from initial test runs. After k iterations of the RS-loop,
we wish to deduce whether it is beneficial to run RS for one more
iteration or not. Hence, let us now define two competing actions,{

D0 : Run RS for one more iteration, then stop,
D1 : Stop RS now.

We then decide to stop the RS-loop whenever the expected cost of
D0 is greater than the cost of D1. Otherwise, we run the k + 1’th
iteration of the RS-loop and then check the stopping criteria again.

Let mk = cardinality(Lk) be the number of remaining parti-
cles after k iterations of the RS-loop. Hence, mk is a non-increasing
sequence with m0 = M . Under (A1), the cost of D1 is given by

Ck(D1) = Nd1mk. (4a)

Similarly, the expected cost of D0 is

Ck(D0) = d0mk +Nd1(mk − āk), (4b)

where āk = E[ak] and ak is the number of accepted draws in the
k + 1’th RS-iteration. With 1(·) being an indicator function, it fol-
lows that

āk = E

[
mk∑
`=1

1(the Lk(`)’th backward trajectory is accepted)

]

=
1

ρ

mk∑
`=1

E[f(x̃
Lk(`)
t+1 | xC(`)

t)] =
1

ρ

mk∑
`=1

N∑
i=1

wi
tf(x̃

Lk(`)
t+1 | xit).

(5)

Here, the expectation is implicitly conditioned on the forward filter
particle system and the backward trajectories down to time t+ 1.

With p̄k = āk/mk being the average acceptance probability, it
follows from (4) that

Ck(D1) < Ck(D0)⇔ p̄k <
d0

Nd1
. (6)

Interestingly, (6) is an inequality related to only one unknown vari-
able, namely p̄k. Under (A1), the stopping rule defined by (6), i.e. to
stop the rejection sampling whenever the average acceptance prob-
ability falls below a given threshold, is optimal w.r.t. the expected
computational time. We refer to this stopping rule as Sopt.

However, so far we have neglected the overhead in computa-
tional time caused by the evaluation of the stopping criteria. For
Sopt, this cost is clearly not negligible, since the computation of (5)
scales as O(MN), i.e. of the same order as the FFBS. To overcome
this problem, we seek an approximation of the optimal stopping rule
Sopt, with a much smaller computational overhead. In particular, we
seek a method in which the computational complexity of evaluating
the stopping criteria is independent of N and M . To accomplish
this, we consider a filtering approach to estimate p̄k at each iteration
of the RS-loop.

3.3. Adaptive stopping

As pointed out above, p̄k is the only unknown variable which we are
interested in tracking at each iteration of the RS-loop, as d0 and d1

can be calculated before running the algorithm.
To obtain an as simple tracker as possible, we choose a linear

Gaussian model for p̄k, so that it can be estimated by running a
conventional Kalman filter (KF). First, we note that p̄k is a vari-
able which is normally decreasing with k. The reason is that the
backward trajectories with highest acceptance probabilities are typ-
ically accepted early, leaving trajectories with lower probabilities.
The measurement is taken as ak, since this is the only variable which
is readily available. We thus specify a state-space model for the av-
erage acceptance probability according to,{

p̄k =
(

1− ak−1

mk−1

)
p̄k−1 + vk state model,

ak = mkp̄k + wk observation model,
(7)

The noises vk and wk are modeled as mutually independent zero-
mean Gaussian processes with vk ∼ N (0, σ2

v) andwk ∼ N (0, σ2
w),

respectively. The initial state is modeled as p̄0 ∼ N (x0, P0). Since
ak is not available until after RS-iteration k + 1, we make one step
ahead predictions p̂k|k−1, which are used in place of p̄k in the stop-
ping rule (6). The additional steps for Algorithm 3, required by the
adaptive stopping rule, are given in Algorithm 4. We refer to this
stopping rule as Sadpt.

Algorithm 4 Adaptive stopping rule
After running Step 8 of Algorithm 3, do:

1: Compute ak−1 = mk−1 −mk.
2: Make a KF measurement update to compute p̂k−1|k−1 and
Pk−1|k−1, using the model (7).

3: Make a KF time update to compute p̂k|k−1 and Pk|k−1, using
the model (7).

4: if p̂k|k−1 <
d0

Nd1
then

5: Stop rejection sampling.
6: end if

6295

Table 1: CPU times in seconds for 1D linear model

q FFBS RS-FFBS K̄= M
5

K̄= M
10

K̄= M
20

Sadpt

10 24.86 0.72 0.35 0.34 0.37 0.36
1 26.27 5.30 0.69 0.60 0.61 0.64
0.1 25.21 18.29 2.86 1.87 1.11 1.18
0.01 27.32 17.24 2.84 2.33 1.75 1.92

Table 2: CPU times in seconds for 2D linear model

τ FFBS RS-FFBS K̄= M
5

K̄= M
10

K̄= M
20

Sadpt

0.1 44.65 19.5 2.03 1.94 2.36 1.92
1 45.28 77.71 3.49 3.65 5.33 3.79
10 48.63 355.7 14.83 20.21 25.86 15.25

Table 3: CPU times in seconds for a standard nonlinear model

FFBS RS-FFBS K̄= M
5

K̄= M
10

K̄= M
20

Sadpt

NL 21.57 2.48 1.04 0.84 0.78 0.80

4. NUMERICAL ILLUSTRATION

To show how well the proposed stopping rules, Sdet and Sadpt, per-
form in comparison with FFBS and RS-FFBS, we evaluate them on
three different models. We emphasize that all the considered particle
smoothers are equivalent in terms of accuracy. Indeed, all the meth-
ods will generate samples from the same distribution, and it is only
the computational time for the simulation that differs. Consequently,
we only consider the computational times of the different methods in
the evaluation. For an illustration of the performance of FFBS, see
e.g. [9]. All the simulations are done on a standard laptop Intel(R)
Core(TM) i7-3720Qm 2.60GHz platform with 8GB of RAM.

First, we consider a linear-Gaussian model defined by:

xt+1 = 0.9xt + nx,t (8a)
yt = xt + ny,t, (8b)

where nx,t ∼ N (0, q) and ny,t ∼ N (0, r). Furthermore, we
choose r = 1 and q ∈ {0.01, 0.1, 1, 10}. The reason to choose
different values for q is to simulate different acceptance probabil-
ities in the rejection sampler, where q = 0.01, corresponds to a
very low acceptance probability and q = 10, correspond to a fairly
high acceptance probability. Moreover, we choose N = 5000 for-
ward filter particles and M = 1000 backward trajectories. For the
deterministic stopping rule, we consider three different thresholds:
K̄ ∈ {M

5
, M

10
, M

20
}. The setting for the KF-based (adaptive) stopping

rule is as follows: p̄0 ∼ N (0.5, 0.001), σ2
v = m−1

k and σ2
w = 1.

We run all the algorithms for five different datasets, each consist-
ing of T = 100 samples, and averaging ten times for each dataset
to cancel the effects of randomness. We clock the CPU times using
the tic and toc commands in Matlab. The results for different
choices of q are shown in Table 1. For high acceptance probabilities
(q = 10), there is a very big gain in using RS-FFBS instead of FFBS.
However, as the acceptance probability is decreased (smaller q), this
gain is diminished. By using the proposed stopping rules, we main-
tain a large improvement even for small acceptance probabilities. All
methods with early stopping provide a significant improvement over
both FFBS and RS-FFBS. Furthermore, the adaptive stopping rule
results in CPU times which appear to be close to a fairly good tuning
of the deterministic stopping rule (corresponding to K̄ = M

20
).

10 20 30 40 50 60 70 80 90
10

1

10
2

10
3

Time Steps

K̄

RS − FFBS K̄ = M/5 K̄ = M/10 K̄ = M/20 Sadpt Sopt

Fig. 1: Value of Kt for different stopping rules at each time step for
a standard nonlinear example.

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

k

p̄
k

KF estimate of p
Exact p

Fig. 2: Value of p̄k for Sadpt and Sopt at each iteration of RS scheme
averaged over all time steps for a standard nonlinear example.

As a second example, we consider a second order linear Gaus-
sian model, previously used in [4]. We use different values for the
parameter τ (see [4] for details on the model) to represent different
acceptance probabilities. In all other respect, we use the same set-
tings as above. The results are reported in Table 2. This is a more
challenging model for RS-FFBS, which is evident as its CPU time
increases considerably as τ increases. Again, there is a considerable
gain in using early stopping. The best tuning for the determinis-
tic rule (among the considered values) is for this model K̄ = M

5
,

which is different from the previously considered model. Still, the
adaptive stopping rule results in CPU time close to this value for the
deterministic rule. This highlights the ability of the adaptive rule to
automatically tune itself to the properties of the model.

Finally, we consider a standard nonlinear time-series model pre-
viously used by, among others, [15, 16, 9]. The CPU times are re-
ported in Table 3. We also plot the resulting sequences K1:T for the
different stopping rules, for one specific batch of data, in Figure 1.
In this plot, we also include the optimal stopping rule Sopt, computed
using (5) and (6). In Figure 2 we also plot the KF filter estimate of
p̄k used in Sadpt, together with the actual value of p̄k.

5. CONCLUSIONS

We have developed an extension to the rejection-sampling-based for-
ward filter/backward simulator (RS-FFBS) particle smoother, de-
noted RS-FFBS with early stopping. The proposed method is a hy-
brid between RS-FFBS and standard FFBS. A specific stopping rule
determines when to abort the rejection sampling loop and make an
exhaustive evaluation of the backward sampling probabilities. We
have proposed two different stopping rules. First, a deterministic
rule which is attractive due to its simplicity. Second, an adaptive
rule which is attractive due to its ability to automatically tune itself
to the model under study. Both stopping rules were found to signifi-
cantly reduce the computational cost over both FFBS and RS-FFBS
in a simulation study.

6296

6. REFERENCES

[1] A. Doucet and A. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in The Oxford Handbook of
Nonlinear Filtering, D. Crisan and B. Rozovsky, Eds. Oxford
University Press, 2011.

[2] F. Gustafsson, “Particle filter theory and practice with posi-
tioning applications,” IEEE Aerospace and Electronic Systems
Magazine, vol. 25, no. 7, pp. 53–82, 2010.

[3] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte
Carlo sampling methods for Bayesian filtering,” Statistics and
Computing, vol. 10, no. 3, pp. 197–208, 2000.

[4] P. Fearnhead, D. Wyncoll, and J. Tawn, “A sequential smooth-
ing algorithm with linear computational cost,” Biometrika, vol.
97, no. 2, pp. 447–464, 2010.

[5] M. Briers, A. Doucet, and S. Maskell, “Smoothing algorithms
for state-space models,” Annals of the Institute of Statistical
Mathematics, vol. 62, no. 1, pp. 61–89, Feb. 2010.

[6] C. Dubarry and R. Douc, “Particle approximation improve-
ment of the joint smoothing distribution with on-the-fly vari-
ance estimation,” arXiv.org, arXiv:1107.5524, July 2011.

[7] F. Lindsten, M. I. Jordan, and T. B. Schön, “Ancestor sampling
for particle Gibbs,” in Proceedings of the 2012 Conference on
Neural Information Processing Systems (NIPS), Lake Tahoe,
NV, USA, Dec. 2012.

[8] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov
chain Monte Carlo methods,” Journal of the Royal Statistical
Society: Series B, vol. 72, no. 3, pp. 269–342, 2010.

[9] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smooth-
ing for nonlinear time series,” Journal of the American Statis-
tical Association, vol. 99, no. 465, pp. 156–168, Mar. 2004.

[10] A. Doucet, S. J. Godsill, and M. West, “Monte Carlo filtering
and smoothing with application to time-varying spectral esti-
mation,” in Proceedings of the 2000 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Istanbul, Turkey, June 2000.

[11] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential
Monte Carlo smoothing for general state space hidden Markov
models,” Annals of Applied Probability, vol. 21, no. 6, pp.
2109–2145, 2011.

[12] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and
D. Lang, “Fast particle smoothing: if I had a million parti-
cles,” in Proceedings of the 23rd International Conference on
Machine Learning, Pittsburgh, USA, June 2006.

[13] P. Bunch and S. Godsill, “Improved particle approximations
to the joint smoothing distribution using Markov chain Monte
Carlo,” IEEE Transactions on Signal Processing, vol. 61, no.
4, pp. 956–963, 2013.

[14] F. Lindsten, Rao-Blackwellised particle methods for infer-
ence and identification, Licentiate thesis no. 1480, Depart-
ment of Electrical Engineering, Linköping University, SE-581
83 Linköping, Sweden, June 2011.

[15] M. L. Andrade Netto, L. Gimeno, and M. J. Mendes, “A new
spline algorithm for non-linear filtering of discrete time sys-
tems,” in Proceedings of the 7th Triennial World Congress,
Helsinki, Finland, 1979, pp. 2123–2130.

[16] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation,”
Radar and Signal Processing, IEE Proceedings F, vol. 140, no.
2, pp. 107 –113, Apr. 1993.

6297

