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ABSTRACT

We consider the smoothing problem for a class of conditionally lin-
ear Gaussian state-space (CLGSS) models, referred to as mixed lin-
ear/nonlinear models. In contrast to the better studied hierarchical
CLGSS models, these allow for an intricate cross dependence be-
tween the linear and the nonlinear parts of the state vector. We de-
rive a Rao-Blackwellized particle smoother (RBPS) for this model
class by exploiting its tractable substructure. The smoother is of the
forward filtering/backward simulation type. A key feature of the pro-
posed method is that, unlike existing RBPS for this model class, the
linear part of the state vector is marginalized out in both the forward
direction and in the backward direction.

Index Terms— Rao-Blackwellization, particle smoothing,
backward simulation, sequential Monte Carlo.

1. INTRODUCTION

Particle filters (PF) and particle smoothers (PS) are useful for state
inference in nonlinear state-space models (SSM) [1, 2]. It is well
recognized that the Rao-Blackwellized PF (RBPF) [3, 4, 5], can be
used to address the filtering problem in conditionally linear Gaus-
sian state-space (CLGSS) models. By exploiting the tractable sub-
structure present in these models, the RBPF results in more accurate
estimators than a standard PF [6, 7] and it can therefore be used for
filtering in even more challenging, e.g. high-dimensional, models.

However, Rao-Blackwellization has not been as well explored
for smoothing. Most Rao-Blackwellized particle smoothers (RBPS)
have been focused on a type of hierarchical CLGSS models, for
which the “nonlinear state” is Markovian [8, 9, 10]. Here, we con-
sider instead a class of mixed linear/nonlinear SSMs, given by

ut+1 = g(ut) +B(ut)zt +G(ut)v
u
t , (1a)

zt+1 = f(ut) +A(ut)zt + F (ut)v
z
t , (1b)

yt = h(ut) + C(ut)zt + et, (1c)

where vut ∼ N (0, I), vzt ∼ N (0, I) and et ∼ N (0, R(ut)). We
assume that Q(ut) , G(ut)G(ut)

T and R(ut) are invertible, but
we do not assume invertibility of F (ut)F (ut)

T. The state consists
of two parts, xt = (ut, zt), where there is a nonlinear dependence
on ut (referred to as the nonlinear state) and an affine dependence
on zt (referred to as the linear state).

The first and the fourth authors were supported by: the project Cal-
ibrating Nonlinear Dynamical Models (Contract number: 621-2010-5876)
funded by the Swedish Research Council and CADICS, a Linneaus Center
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This model is CLGSS, but it is more involved than a hierarchical
CLGSS models, since there is a cross-dependence between the linear
and the nonlinear states. That is, the nonlinear state process alone is
non-Markovian. This class of models arise, for instance, when the
observations depend nonlinearly on a subset of the states in a sys-
tem with linear dynamics. An RBPF for the mixed linear/nonlinear
model was derived and used for terrain-aided aircraft navigation in
[3]. In this contribution, we derive a novel RBPS, akin to the recent
contributions for hierarchical CLGSS models [8, 9], but applicable
to the model (1). The proposed method is based on the forward fil-
ter/backward simulator (FFBS) by [11]. A key property of the pro-
posed method is that it only samples the nonlinear part of the state,
both in the forward and backward directions, as opposed to, for in-
stance [10, 12], who sample the full state in the backward direction.

For a vector µ and a positive semidefinite matrix Ω � 0, we
write ‖µ‖2Ω , µTΩµ. We write |A| for matrix determinant and
N (µ,Σ) and N (x;µ,Σ) for the Gaussian distribution and proba-
bility density function (PDF), respectively.

2. BACKGROUND

2.1. Particle filtering and smoothing

Consider first a standard, Markovian SSM: xt+1 = f(xt) + vt
and yt = h(xt) + et, where f and h are nonlinear functions, and
vt and et have known, tractable densities. A particle filter is a se-
quential Monte Carlo algorithm used to approximate the intractable
filtering density, representing it with a set of weighted particles
{xi1:t, w

i
t}Ni=1, each of which is a state trajectory x1:t,

p̂N (dx1:t | y1:t) ,
N∑
i=1

wi
tδxi

1:t
(dx1:t). (2)

In the simplest particle filter, the t-th set of particles are formed by
sampling x1:t−1 from the previous distribution and then xt from an
importance distribution. A weight is assigned to each particle to ac-
count for the difference between the proposal and the target density.
Note that an approximation to p(xt | y1:t) is obtained by marginal-
ization of (2), which equates to simply discarding x1:t−1.

The term “smoothing” encompasses a number of related infer-
ence problems, but here we focus on the estimation of the complete
joint smoothing distribution, p(x1:T | y1:T ). This distribution is ap-
proximated at the final step of the particle filter [13]. However, this
approximation suffer from the problem of path degeneracy, i.e. the
number of unique particles decreases rapidly for t � T . A diverse
set of particles may be generated by sampling state trajectories using
the forward filtering/backward simulation (FFBS) algorithm [11].
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FFBS exploits a sequential factorization of the joint smoothing
density p(x1:T | y1:T ) = p(xT | y1:T )

∏T−1
t=1 p(xt | xt+1:T , y1:T ).

A final state, x′T is first sampled from the particle filter approxima-
tion p̂N (dxT | y1:T ). Then, working sequentially backwards from
time T , each subsequent state x′t is sampled from the backwards ker-
nel, p(xt | xt+1:T , y1:T ). The resulting trajectory {x′1:T } is then a
sample from the smoothing distribution.

Using the Markov property, the backward kernel may be ex-
panded as

p(xt | xt+1:T , y1:T ) ∝ p(xt+1 | xt)p(xt | y1:t). (3)

The second factor is approximated using the particle filter, leading to
the representation, p̂N (dxt | xt+1:T , y1:T ) ,

∑N
i=1 w̃

i
t|T δxi

t
(dxt),

with w̃i
t|T ∝ wi

t p(xt+1 | xit).

2.2. Rao-Blackwellized particle filtering

The structure of a CLGSS model (such as (1)) can be exploited by
using an RBPF, by exploiting the factorization p(u1:t, zt | y1:t) =
p(zt | u1:t, y1:t)p(u1:t | y1:t). Since the model is CLGSS, it holds
that

p(zt | u1:t, y1:t) = N (zt; z̄t|t(u1:t), Pt|t(u1:t)). (4)

A PF is used to estimate only the nonlinear state marginal density
while conditional Kalman filters, one for each particle, are used to
compute the moments for the linear state in (4). The resulting RBPF
approximation is given by

p̂N (du1:t, dzt | y1:t) =

N∑
i=1

wi
tN (dzt; z̄

i
t|t, P

i
t|t)δui

1:t
(du1:t).

The particle weights are given by the ratio of the Gaussian joint den-
sity p(yt, ut | u1:t−1, y1:t−1) and the importance density. See [3]
for details. The reduced dimensionality of the particle approxima-
tion results in a reduction in variance of associated estimators [6, 7].

3. RAO-BLACKWELLIZED PARTICLE SMOOTHING

The new RBPS for the model (1) is an FFBS which uses the RBPF as
a forward filter. The novelty lies in the construction of a backward
simulator which samples only the nonlinear state in the backward
pass. Difficulty arises because the nonlinear state process is non-
Markovian. Practically, this means that the backward kernel cannot
be expressed in a simple way, as in (3). Furthermore, it implies
that the measurement likelihood depends on the complete history
u1:t; we must therefore sample whole trajectories produced by the
RBPF. More precisely, let u′t+1:T be a partial, nonlinear backward
trajectory. To extend this trajectory to time t, we draw one of the
RBPF particles {ui

1:t}Ni=1 (with probabilities computed below), set
u′t:T = {ui

t, u
′
t+1:T } and discard ui

1:t−1. This procedure is repeated
for each time t = T − 1, . . . , 1, resulting in a complete backward
trajectory.

To compute the backward sampling probabilities, we note that

p(u1:t | ut+1:T , y1:T ) ∝ p(yt+1:T , ut+1:T | u1:t, y1:t)p(u1:t | y1:t).
(5)

The second factor in this expression can be approximated by the
forward RBPF, analogously to a standard FFBS. This results in a
point-mass approximation of the backward kernel, given by

p̂N (du1:t | ut+1:T , y1:T ) =

N∑
i=1

w̃i
t|T δui

1:t
(du1:t), (6)

with

w̃i
t|T ∝ wi

t p(yt+1:T , u
′
t+1:T | ui

1:t, y1:t). (7)

It remains to find an expression for the predictive PDF in this ex-
pression (up to proportionality). In fact, this PDF can be computed
straightforwardly by running a conditional Kalman filter from time
t up to time T . However, using such an approach to calculate the
weights at time t would require N separate Kalman filters to run
over T − t time steps, resulting in a total computational complexity
scaling quadratically with T . To avoid this, we seek an efficient re-
cursion for the weights (7). This is accomplished by propagating a
set of statistics backward in time, as the trajectory u′1:T is generated.
The idea is similar to that of [14, 9, 8] but our derivation is adapted
to the mixed linear/nonlinear model (1). To start with, we express
the predictive PDF as

p(yt+1:T , ut+1:T | u1:t, y1:t)

=

∫
p(yt+1:T , ut+1:T | zt, ut)p(zt | u1:t, y1:t) dzt, (8)

where the second factor of the integrand is given by the RBPF (4).
Hence, we seek an expression for the first factor of the integrand.
The following two propositions, which will be used alternately in
the backward simulation, provide the updating equations for a set of
sufficient statistics for this PDF. For brevity, we write At for A(ut),
etc.

Proposition 1 (Backward prediction). Given Ω̂t+1 and λ̂t+1 as in
Proposition 2, for any 1 ≤ t ≤ T − 1,

p(yt+1:T , ut+1:T | zt, ut) ∝ Zt exp
(
− 1

2

(
zTt Ωtzt − 2λT

t zt
))
,

where Zt, Ωt � 0 and λt depend on ut, but are independent of zt,
and the proportionality is w.r.t. (ut, zt). The updated statistics are
given by,

Zt = |Mt|−1/2|Qt|−1/2 exp
(
− 1

2
τt
)

Ωt = AT
t

(
Ω̂t+1 − Ω̂t+1FtM

−1
t FT

t Ω̂t+1

)
At +BT

t Q
−1
t Bt,

λt = AT
t

(
I − Ω̂t+1FtM

−1
t FT

t

)
mt +BT

t Q
−1
t (ut+1 − gt),

with mt = λ̂t+1 − Ω̂t+1ft and Mt = FT
t Ω̂t+1Ft + I and

τt = ‖(ut+1 − gt)‖2Q−1
t

+ ‖ft‖2Ω̂t+1
− 2λ̂T

t+1ft − ‖FT
t mt‖2M−1

t
.

Proof. See Section 4.

Proposition 2 (Update). Given Ωt and λt as in Proposition 1, for
any 1 ≤ t ≤ T − 1,

p(yt:T , ut+1:T | zt, ut) ∝ exp
(
− 1

2

(
zTt Ω̂tzt − 2λ̂T

t zt
))

,

where Ω̂t � 0 and λ̂t depend on ut, but are independent of zt, and
the proportionality is w.r.t. zt. The updated statistics are given by,

Ω̂t = Ωt + CT
t R
−1
t Ct,

λ̂t = λt + CT
t R
−1
t (yt − ht).

Furthermore, at time T , it holds that

p(yT | zT , uT ) ∝ exp
(
− 1

2

(
zTT Ω̂T zT − 2λ̂T

T zT
))

,

with Ω̂T = CT
TR
−1
T CT and λ̂T = CT

TR
−1
T (yT − hT ).
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Proof. See Section 4.

We thus have a recursion for updating the statistics Zt, Ωt and
λt. Using these quantities, together with (4), we can solve the inte-
gral (8). This is formalized in the next proposition.

Proposition 3. Let z̄t|t and Pt|t = Γt|tΓ
T
t|t be given as in (4) and

let Zt, Ωt and λt be given as in Proposition 1. Then,

p(yt+1:T , ut+1:T | u1:t, y1:t) ∝ Zt|Λt|−1/2 exp
(
− 1

2
ηt
)
,

where the proportionality is w.r.t. u1:t and where,

ηt = ‖z̄t|t‖2Ωt
− 2λT

t z̄t|t − ‖ΓT
t|t(λt − Ωtz̄t|t)‖2Λ−1

t
,

Λt = ΓT
t|tΩtΓt|t + I.

Proof. See Section 4.

By plugging this result into (7), we obtain an expression for the
backward sampling weights. The resulting RBPS is given in Algo-
rithm 1.

Algorithm 1 Rao-Blackwellized FFBS

1. Forward filter: Run an RBPF for time t = 1, . . . , T . For
each t, store {ui

t, w
i
t, z̄

i
t|t,Γ

i
t|t}Ni=1.

2. Initialize: Draw u′T = ui
T with probability wi

T . Compute
Ω̂T and λ̂T as in Proposition 2.

3. For t = T − 1 to 1:

(a) For each forward filter particle, i = 1, . . . , N :

i. Compute {Zi
t ,Ω

i
t, λ

i
t} as in Proposition 1.

ii. Compute {Λi
t, η

i
t} as in Proposition 3.

iii. Compute W̃ i
t = wi

tZ
i
t |Λi

t|−1/2 exp
(
− 1

2
ηit
)
.

(b) Normalize the weights, w̃i
t|T = W̃ i

t /
∑

l W̃
l
t .

(c) Set J = i with probability w̃i
t|T .

(d) Set u′t:T = {uJ
t , u
′
t:T } and {Ωt, λt} = {ΩJ

t , λ
J
t }.

(e) Compute {Ω̂t, λ̂t} as in Proposition 2.

As for a standard FFBS, the backward simulation is typi-
cally repeated M times, to generate a set of backward trajecto-
ries {u′,j1:T }

M
j=1 which can be used to approximate p(u1:T | y1:T ).

If we seek smoothed estimates of the linear states, these can be
computed, e.g. by running a modified Bryson-Frazier [15] or a
Rauch-Tung-Striebel (RTS) [16] smoother for each backward tra-
jectory (alternatively, we can run conditional Kalman filters and fuse
the filter estimates with the backward statistics). The total compu-
tational complexity of generating M backward trajectories, using
N forward filter particles, is O(NMT ) (i.e. the same as for a stan-
dard FFBS). The computational cost can be reduced by using the
rejection-sampling-based FFBS by [17] or the Metropolis-Hastings-
based FFBS by [18].

4. PROOFS

In this section, we prove Propositions 1–3. We start with a useful
lemma.

Lemma 1. Let ξ ∼ N (0, I) and let z = c+Ax+Γξ, for some con-
stant vectors c and x and matrices A and Γ of appropriate dimen-
sions. Let Ω � 0 and λ be a constant matrix and vector, respectively.
Then E

[
exp

(
− 1

2

(
zTΩz − 2λTz

))]
= |M |−1/2 exp

(
− 1

2
γ
)

with,

γ = ‖Ax‖2Ω−ΩΓM−1ΓTΩ − 2xTAT
(
I − ΩΓM−1ΓT

)
m

+ ‖c‖2Ω − 2λTc− ‖ΓTm‖2M−1 ,

where m = λ− Ωc and M = ΓTΩΓ + I .

Proof. A detailed proof is omitted due to lack of space. The result
follows by plugging in the expression for z and carrying out the in-
tegration w.r.t. ξ.

Propositions 1 and 2 are given by induction. The initialization
at time T in Proposition 2 follows directly from (1c),

p(yT | zT , uT ) = N (yT ;hT + CT zT , RT )

∝ exp
(
− 1

2

(
‖CT zT ‖2R−1

T

− 2zTTC
T
TR
−1
T (yT − hT )

))
. (9)

Hence, assume that Proposition 2 holds at time t+ 1. We have,

p(yt+1:T , ut+1:T | zt, ut) = p(ut+1 | zt, ut)

×
∫
p(yt+1:T , ut+2:T | zt+1, ut+1)p(zt+1 | zt, ut) dzt+1.

(10)

The first factor is a Gaussian PDF, given by (1a),

p(ut+1 | zt, ut) = N (ut+1; gt +Btzt, Qt)

∝ |Qt|−1/2 exp
(
− 1

2

(
‖ut+1 − gt‖2Q−1

t

))
× exp

(
− 1

2

(
‖Btzt‖2Q−1

t
− 2zTt B

T
t Q
−1
t (ut+1 − gt)

))
.

To compute the integral in (10), we use the induction hypothesis and
(1b). We then apply Lemma 1 with c = ft, A = At, x = zt,
Γ = Ft, Ω = Ω̂t+1 and λ = λ̂t+1. Proposition 1 then follows by
collecting terms from the two factors.

Next, to prove Proposition 2 for t < T , we assume that Propo-
sition 1 holds at time t. We have,

p(yt:T , ut+1:T | zt, ut) = p(yt | zt, ut)p(yt+1:T , ut+1:T | zt, ut).

The first factor is given by (1c), analogously to (9), and the second
factor is given by Proposition 1. The result follows by collecting
terms from the two factors.

Finally, to prove Proposition 3 we note that the sought density
is given by (8) where the two factors of the integrand are given by
Proposition 1 and by (4), respectively. The result follows by apply-
ing Lemma 1 with c = z̄t|t, x = 0, Γ = Γt|t, Ω = Ωt and λ = λt.

5. NUMERICAL RESULTS

We evaluate the proposed RBPS by comparing its performance with
alternative smoothers. The following methods are considered:

• FFBS: A non-Rao-Blackwellizedd FFBS [11].

• RB-F/S: A Rao-Blackwellized Kitagawa filter/smoother [13].

• RB-FF/JBS: Rao-Blackwellized forward filter/joint back-
ward simulator [12].

• RB-FFBS: The proposed method (Algorithm 1).

6290



For all methods, a bootstrap PF [19] or RBPF [3] is used in the for-
ward direction.

The RB-F/S consists of running an RBPF and storing the non-
linear state trajectories. Smoothed linear state estimates are then
computed by running constrained RTS smoothers, conditionally on
these nonlinear trajectories. The RB-FF/JBS is the “joint backward
simulator with constrained RTS smoothing” by [12] (see also [10]).
In this method, we run an RBPF in the forward direction, but sample
both the nonlinear and the linear states in the backward direction.
The method relies on having access to the linear state samples in or-
der to compute the backward sampling probabilities. However, once
the backward simulation is complete, the linear parts of the trajecto-
ries are discarded. Refined linear state estimates are then computed
by, again, running constrained RTS smoothers, one for each nonlin-
ear backward trajectory.

We consider a 5th order mixed linear/nonlinear system. The
nonlinear part is given by the time series,

ut+1 = 0.5ut + θt
ut

1 + u2
t

+ 8 cos(1.2t) + 0.071vut , (11a)

yt = 0.05u2
t + et, (11b)

for some process {θt}t≥1. The case with a static θt ≡ 25 has been
studied, among others, by [20, 19]. Here, we assume instead that
θt is a time varying parameter with known dynamics, given by the
output from a 4th order linear system,

zt+1 =

3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0

 zt + 0.1vzt (12a)

θt = 25 +
(
0 0.04 0.044 0.008

)
zt, (12b)

with poles in 0.8±0.1i and 0.7±0.05i. Combined, (11) and (12) is a
mixed linear/nonlinear system. The noises are assumed to be white,
Gaussian and mutually independent; vut ∼ N (0, 1), vzt ∼ N (0, I)
and et ∼ N (0, 0.1).

We generate 1000 batches of data from the system, each with
T = 100 samples. We run the smoothers two times, first with N =
300 and then with N = 30 particles. The backward-simulation-
based methods use M = N/3 backward trajectories, based on the
recommendation to set M . N [21]. Table 1 summarizes the re-
sults, in terms of the time averaged RMSE values for the nonlinear
state ut and for the time varying parameter θt (note that θt is a linear
combination of the four linear states zt).

Table 1. RMSE values averaged over 1 000 runs

N = 300 N = 30
Smoother ut θt ut θt

FFBS 0.499 0.782 1.203 1.238
RB-F/S 0.424 0.660 0.980 0.909
RB-FF/JBS 0.399 0.579 0.967 0.869
RB-FFBS 0.398 0.564 0.965 0.836

The proposed RB-FFBS gives the most accurate results among
the considered smoothers, both for N = 300 and N = 30. The
difference between RB-FFBS and RB-FF/JBS is quite small, but
standard statistical hypothesis tests indeed indicate a clear statisti-
cal significance. In fact, these two methods are in many respects
similar. They use similar forward and backward recursions and
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27

Time (t)
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Fig. 1. Estimates of θt for t = 1, . . . , T . From top left to bottom
right; FFBS, RB-F/S, RB-FF/JBS and RB-FFBS. Each curve corre-
sponds to one particle trajectory (θ′1:T for FFBS and θ̄′1:T |T for the
remaining smoothers). The true value is shown as a thick black line.

they both use conditional RTS smoothers to compute smoothed
estimates of the linear states. Hence, in terms of implementation
and computational complexity, they are almost identical. With this
in mind, and from the fact that the results in Table 1 are in favor
of RB-FFBS, we believe that the RB-FFBS indeed is the preferred
method of choice, between these two smoothers. Furthermore, in the
authors’ opinion, RB-FFBS makes use of a more intuitively correct
Rao-Blackwellization, since the marginalization is done both in the
forward direction and in the backward direction.

For further comparison, Figure 1 shows the estimates of θt for
one specific batch of data, using N = 300 and M = 100. This
reveals a clear difference between the methods’ abilities of accu-
rately representing the posterior distribution of θt. For FFBS and
RB-F/S (the top row), there is a clear degeneracy in the trajectories.
For RB-F/S, this is expected, as it is a direct effect of the path de-
generacy of the RBPF. For the (non-Rao-Blackwellized) FFBS, the
degeneracy is caused by the fact that N = 300 particles is insuf-
ficient to represent the posterior in all five dimensions, resulting in
that only a few particles get significantly non-zero weights. This will
cause the backward simulator to degenerate, in the sense that many
backward trajectories will coincide. The Rao-Blackwellized back-
ward simulators (bottom row) perform much better in this respect,
as there is a much larger diversity among the backward trajectories.

6. CONCLUSION

A new smoother for a class of mixed linear/nonlinear state-space
models has been presented. The method is a forward filter/backward
simulator which uses Rao-Blackwellization to exploit the condition-
ally linear Gaussian structure of the model. In contrast to previously
developed algorithms for this model, the new smoother samples the
linear state component in neither the forward nor the backward di-
rection. Instead, a recursion has been derived which allows efficient
calculation of backward sampling probabilities. Simulations have
been used to demonstrate that the smoother functions well, with im-
provements in RMSE over previous algorithms.
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