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ABSTRACT

Copula Gaussian graphical models are capable of describ-
ing dependencies between a large number of heterogeneous
variables. In this paper, low-complexity algorithms are pro-
posed for learning copula Gaussian graphical models from
discrete data. The proposed approach is Monte-Carlo expec-
tation maximization: in the E-step, an efficient Gibbs sam-
pler is applied, and in the M-step, the sparse graphical model
is inferred by solving a penalized maximize likelihood prob-
lem. The regularization parameter is determined through the
BINCO method proposed by Li et al. Numerical results for
both synthetic and real data demonstrate the effectiveness of
the proposed approach.

Index Terms— copula, discrete data, glasso, Gibbs sam-
pling, expectation maximization

1. INTRODUCTION

Sparse graphical models provide an effective way to describe
and exploit statistical patterns in data, especially for high-
dimensional datasets such as gene expression data, multi-
electrode brain recordings, and stock market data. Gaussian
graphical models are commonly used in this context, since
inference in such models is often tractable, either exactly or
approximately. The structure of a Gaussian graphical model
is characterized by its precision matrix (the inverse covariance
matrix): zero elements in the precision matrix correspond to
the absence of edges in the graphical model and the condi-
tional independence between pairs of variables. A common
method of finding a sparse precision matrix from Gaussian
data is to maximize the log-likelihood with an `1 penalty on
the precision matrix. The problem can be solved by a simple
and fast algorithm, i.e., graphical lasso or glasso [1].

Real-world datasets, however, are often non-Gaussian, for
instance, geophysics data or digital images. For non-Gaussian
continuous data, Liu et al. [2] proposed to use copula Gaus-
sian graphical models; non-Gaussian observed variables are
transformed to Gaussian latent variables, and next a sparse
graphical model is learned from the Gaussian data. In ear-
lier work, we have extended this approach to hidden-variable
graphical models [3], multiscale graphical models [4], and
extreme-value graphical models [5], which are more power-
ful models that can be applied to a wide range of applications.

For discrete data, however, the situation is more con-
voluted; discrete data cannot be transformed directly into
Gaussian data, since the mapping is one-to-many. A com-
mon approach is to apply Markov chain Monte Carlo method
(MCMC) to simulate both the latent Gaussian variables and
the posterior distribution of the precision matrix [6, 7, 8].
Different priors have been selected for the precision matrix
(or the covariance matrix), including covariance selection
prior [6], the inverse-Wishart distribution [7] and the G-
Wishart distribution [8]. On the other hand, the framework
of factor graph is also used to learn the dependence structure
with the generalized double Pareto prior [9].

In this paper, we propose an algorithm to directly infer
point estimates of the precision matrix. The proposed method
is reliable yet much more efficient than the full MCMC ap-
proach of [6, 7, 8, 9], as it avoids the costly Monte Carlo
simulations for the posterior distribution of the precision ma-
trix. Instead, we apply Monte Carlo expectation maximiza-
tion [10]. In the E-step, we draw samples for the latent Gaus-
sian variables by efficient Gibbs sampling [11]. In the M-
step, we learn the sparse Gaussian graphical model through
the glasso method [1]. The sparsity of the resulting graphi-
cal model is determined by the regularization parameter as-
sociated with the glasso method [1]. Standard approaches for
regularization selection are known to result in overly dense
graphs [12]. In this work, we divide the problem of learning
the precision matrix into two steps: we first apply the BINCO
method [13] to learn the sparsity structure of the graphical
model; next we determine the non-zero elements in the preci-
sion matrix via Iterative Proportional Fitting (IPF) [14].

Our numerical results for synthetic data show that the
proposed approach can recover the statistical dependency
between discrete variables more reliably than glasso [1] and
copula glasso [2]. For real datasets, the proposed method
produces very similar results to alternative approaches (see,
e.g. [7, 8, 15, 16]), which are more computationally complex
and less widely applicable.

This paper is organized as follows. In Section 2, we
briefly introduce the Gaussian copula graphical model, and
outline our learning algorithm for discrete data. In Section 3,
we deal with the problem of regularization selection, and in
Section 4, we present numerical results on synthetic and real
datasets; we offer concluding remarks in Section 5.
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2. COPULA GAUSSIAN GRAPHICAL MODEL

We denote the non-Gaussian observed variables and Gaussian
latent variables as Y = Y1, . . . , YP and Z = Z1, . . . , ZP re-
spectively, and a copula Gaussian graphical model is defined
as [6, 8]:

Z ∼ N (0,K−1) (1)

Yk = F−1k (Φ(Zk)), (2)

where K is the precision matrix whose inverse (the covari-
ance matrix) has normalized diagonal, Φ is the CDF (cumu-
lative distribution function) of the standard Gaussian distribu-
tion, and Fk is the CDF of Yk. The latter is often approxi-
mated by the empirical distributions F̂k. Note that F−1(y) =
infx∈X {F (x) ≥ y}. F−1k is a one-to-one mapping for a con-
tinuous distribution, but a one-to-many mapping from the ob-
served discrete Yk to the latent Gaussian Zk [7]. Therefore,
Zk cannot be determined uniquely from the observed discrete
Yk.

In order to learn the graphical model, our objective is
to infer K from L independent observations y(1:L) = y(1),
. . . , y(L), where y(`) = y

(`)
1 , . . . , y

(`)
P . We denote the as-

sociated latent variables as z(1:L) = z(1), . . . , z(L), where
z(`) = z

(`)
1 , . . . , z

(`)
P . A reasonable approach to infer K is

maximum a posteriori (MAP) estimation:

K̂ = argmax
K�0

p(K|y(1:L)), (3)

where the marginal p(K|y(1:L)) is given by:

p(K|y(1:L)) ∝
∫
z

p(y(1:L), z(1:L),K; F̂ )dz(1:L)

= p(K)

L∏
`=1

∫
z(`)

[
N∏
k=1

p(y
(`)
k |z

(`)
k ; F̂k)·

N (z(`); 0,K−1)

]
dz(`).

(4)

If Y is continuous, the conditionals p(yk|zk; F̂k) are Dirac
deltas, and the integrals in the right-hand side (RHS) of (4)
are trivial. If Y is discrete, those integrals are intractable, and
instead we solve (3) by expectation maximization [10]:

K̂(κ+1) = argmax
K

log p(K) +Q(K; K̂(κ)), (5)

where

Q(K; K̂(κ)) =

L∑
`=1

∫
z(`)

[
p(z(`)|y(`); K̂(κ))·

logN (z(`); 0,K−1)

]
dz(`),

(6)

and κ is the iteration number.

Since the integrals in the RHS of (6) are intractable,
we calculate them numerically by Monte Carlo integra-
tion 1/M

∑M
i=1 logN (ẑ

(`,i)
(κ) ; 0,K−1), where the M samples

ẑ
(`,i)
(κ) with i = 1, . . . , M , are drawn from p(z(`)|y(`); K̂(κ)).

The latter is a truncated Gaussian in the case of discrete Y .
Efficient block Gibbs sampling methods have been developed
for truncated Gaussian distributions [11]. Those methods
are also practical when some data is missing: If a sample
is missing for an observed variable Yk, it is still possible
to draw Gibbs samples for Zk, as the corresponding condi-
tional distribution is Gaussian. In summary, we approximate
Q(K; K̂(κ)) as:

Q̂(K; K̂(κ)) ≈
1

M

L∑
`=1

M∑
i=1

logN (ẑ
(`,i)
(κ) ; 0,K−1)

=
L

2

(
log detK − tr(Σ(κ)K)

)
+ C,

(7)

where tr denotes trace, C is an irrelevant constant, and Σ(κ)

is the empirical covariance matrix:

Σ(κ) =
1

L

L∑
`=1

Σ
(`)
(κ) =

1

ML

L∑
`=1

M∑
i=1

ẑ
(`,i)
(κ) (ẑ

(`,i)
(κ) )T , (8)

where Σ
(`)
(κ) may be viewed as the empirical covariance matrix

computed from the `-th observation y(`).
A common choice for the prior p(K) is the Laplace dis-

tribution:

p(K) =
λ̃N

2
exp

(
−λ̃‖K‖1

)
. (9)

That prior favors sparseK and hence a sparse latent Gaussian
graphical model. The resulting Monte-Carlo EM algorithm
iterates the following step until convergence:

K̂(κ+1) = argmax
K�0

log detK − tr(Σ(κ)K)− λ‖K‖1, (10)

where λ = 2λ̃/L. This convex optimization problem can be
solved efficiently in various ways [1, 17]. Convergence of the
EM algorithm for penalized likelihood problems (cf. (10)) has
been proven in [18]. Our experimental study shows that the
algorithm usually converges after several iterations (< 10).
Note that the regularization parameter λ needs to be chosen
appropriately to recover the correct precision matrix K̂(κ+1)

in each EM iteration, which is a critical issue to be addressed
in Section 3.

3. REGULARIZATION SELECTION

A suitable choice of regularization parameters λ in (10) can
produce the graphical model with true sparsity pattern of K.
However, standard procedures for selecting λ are known to
overfit the data and result in graphs that are too dense [12]. As
an alternative, we employ a two-step procedure of structure
learning and parameter learning.
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3.1. Structure Learning

We use the BINCO procedure [13] to infer the sparsity pat-
tern of the precision matrix K(κ+1), from N = ML Gibbs
samples drawn in the E-step.

We randomly divide all the N samples into M sample
sets Sm, m = 1, · · · ,M , each with L samples. For each
λ, we estimate one precision matrix Km for each sample set
Sm by solving (10), resulting in M precision matrices. For
each element (i, j) in the matrix Km, the number of times it
is non-zero for each sample set Sm is counted and divided by
M . As a result, we obtain the selection frequency (or stabil-
ity) x of the corresponding edge associated with λ. Typically,
a proper selection of λ will result in a U-shaped empirical
density function fλ(x) of selection frequencies of all the can-
didate edges, as illustrated in Fig. 1(a).
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Fig. 1. The distribution of selection frequencies based on a
simulated dataset (a) all the edges; (b) null edges and true
edges separately.

The selection frequencies fall into two categories, i.e.,
“true” or “null”, depending on whether the edge exists in
the true graphical model. Consequently, the density func-
tion fλ(x) can be decomposed as fλ(x) = (1 − π)fλ0 (x) +
πfλ1 (x), where π is the proportion of true edges and fλ0 and
fλ1 are the density functions of selection frequencies when
the edge belongs to the “null” and “true” category respec-
tively. As illustrated in Fig. 1(b), there exists V1 and V2,
0 < V1 < V2 < 1, such that, fλ1 → 0 on (V1, V2], and fλ0 is
monotonically decreasing on (V1, 1] [13]. These observations
motivate us to estimate fλ0 and π by fitting empirical fλ on
(V1, V2] to a parametric model, that is, a binomial distribution
with a Beta prior as in [13]. For each λ, we choose the thresh-
old c that minimizes the False Detection Error (FDR) defined
as FDRλ(c) =

∑
x≥c f

λ
0 (x)/

∑
x≥c f

λ(x). We then find the
optimal λ that maximizes the estimated number of true edges
whose definition is Ne(λ) = (1 − FDRλ(c))

∑
x≥c f

λ(x).
Eventually, the sparsity pattern Kp is obtained by retaining
those edges with selection frequencies above threshold c.

3.2. Parameter Learning

After learning the structure of the graphical model (cf. Sec-
tion 3.1), the non-zero entries in the precision matrix can be
inferred via Iterative Proportional Fitting [14].

4. NUMERICAL RESULTS

In this section, we benchmark the proposed method with ex-
isting methods on both synthetic and real data.

4.1. Synthetic Data
We generate synthetic discrete data as follows:

1. We generate a random precision matrix through the
method in [2]. Specifically, first we uniformly sample
x1, ..., xn from a unit square. The precision matrix is
initialized as a unit matrix. Next, we set the element
K(i, j) = K(j, i) of precision matrix equal to ρ =
0.245 with probability (

√
2π)−1 exp(−4‖xi − xj‖2),

and equal to zero otherwise.
2. From the resulting precision matrix, we generate Gaus-

sian data and then apply Beta copulas with different
shape parameters for each variable, leading to non-
Gaussian continuous data.

3. We partition the domain of each continuous variable
into d equidistant intervals, where d is the number of
discrete values for each variable. We replace the sam-
ples within the i-th interval by the value i (with i =
1, · · · , d) , leading to discrete data.

We generate 4 groups of 100 datasets with 2, 3, 5, 10 dis-
crete values respectively, all generated from the same preci-
sion matrix. The sample size for each dataset is 750. Our
results are summarized in Table 1. Precision is defined as the
proportion of correctly estimated edges to all the edges in the
estimated graph; recall is defined as the proportion of suc-
cessfully estimated edges to all the edges in the true graph.
Moreover, F1-score = 2·precision·recall/(precision+recall) is
a weighted average of the precision and recall. We show the
mean value and standard deviation (in brackets) for each cri-
terion averaged over 100 datasets.

Table 1. Quantitative comparison of different methods
Methods Precision Recall F1-score

binary

glasso [1] 0.96(0.09) 0.24(0.08) 0.37(0.11)
continuous copula glasso [2] 0.96(0.09) 0.25(0.09) 0.38(0.11)

discrete copula glasso 0.96(0.07) 0.40(0.10) 0.56(0.10)

3-ary

glasso [1] 0.99(0.03) 0.54(0.17) 0.68(0.17)
continuous copula glasso [2] 0.99(0.04) 0.54(0.17) 0.69(0.16)

discrete copula glasso 0.99(0.04) 0.69(0.18) 0.79(0.15)

5-ary

glasso [1] 0.99(0.02) 0.83(0.09) 0.90(0.05)
continuous copula glasso [2] 1.00(0.01) 0.85(0.10) 0.91(0.06)

discrete copula glasso 1.00(0.01) 0.92(0.08) 0.95(0.04)

10-ary

glasso [1] 1.00(0.01) 0.93(0.05) 0.96(0.03)
continuous copula glasso [2] 1.00(0.01) 0.95(0.05) 0.97(0.03)

discrete copula glasso 1.00(0.007) 0.97(0.04) 0.99(0.02)

The proposed approach (“discrete copula glasso”) always
outperforms glasso [1] and copula glasso [2], especially when
the alphabet is small. The performance of all three methods
improves, when the alphabet size increases and hence more
information about the precision matrix is contained in the dis-
crete data. When the number of discrete values increases to
10 and beyond, the discrete distribution becomes a pseudo-
continuous distribution, which may explain why glasso [1]
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(a) (b) (c) (d)

Fig. 2. Results of different methods on the GSS data: (a)
Hoff’s method [7]; (b) glasso [1]; (c) continuous copula
glasso [2]; (d) discrete copula glasso.

and copula glasso [2] perform well for 10-ary data. We also
considered smaller sample sizes (not shown here), and ob-
served that the performance gain of discrete copula glasso
over the other two methods becomes larger. We also tested
the MCMC algorithm of [8] on the 100 binary datasets (first
group). The resulting mean value (standard deviation) for the
three criteria are 0.76(0.11), 0.48(0.09), 0.58(0.09) respec-
tively. In our simulations, the running time of the proposed al-
gorithm (MATLAB implementation) is about 5 times shorter
than the MCMC approach of [8] (C++ implementation).

4.2. Real Data
4.2.1. General Social Survey Data
Here we consider data from the 1994 General Social Survey
(GSS), concerning 1002 males in the U.S. labor force [19].
The relevant variables are as follows: income of the respon-
dent in 1000s of dollars (INC), highest degree ever obtained
(DEG), number of children ever had (CHILD), financial sta-
tus of respondent’s parents when respondent was 16 (PINC),
maximum of mother’s or father’s highest degree (PDEG), and
number of siblings of the respondent plus one (PCHILD). Age
of the survey respondent is additionally included, as it is typi-
cally strongly related to income and number of children. The
results for all three methods are shown in Fig. 2, in addition
to results for Hoff’s method [7], which is a discrete cop-
ula Gaussian graphical model learned by standard MCMC.
The graphical models obtained from glasso [1] and copula
glasso [2] are quite different from the graphical model from
Hoff’s method [7]. In contrast, the graphical model obtained
through the proposed method is identical to the one from
Hoff’s method (apart from one edge). Hoff’s method [7],
however, is much more computationally complex than the
proposed method. In each iteration, the computational com-
plexity of Gibbs sampling in Hoff’s algorithm are O{LP 4},
while being O{LP 2} in our algorithm. The complexity
of learning dependence structure is not comparable due to
different method used in those two algorithms. Moreover,
Hoff’s method needs 25,000 iterations to simulate the stable
posterior distribution while discrete copula glasso converges
after only 5 iterations.

4.2.2. The Rochdale Data
Here we consider a social survey data set previously analyzed
in [15]. This observational study was conducted in Rochdale

(a) (b) (c) (d)

Fig. 3. Results of different methods on the Rochdale data: (a)
Whittaker’s method [15]; (b) glasso [1]; (c) continuous copula
glasso [2]; (d) discrete copula glasso.

and attempted to explore factors affecting womens economic
activity. The corresponding eight variables are as follows:
a) Wife economically active (no, yes); b) Age of wife > 38
(no, yes); c) Husband unemployed (no, yes); d) Child ≤ 4
(no, yes); e) Wife’s education, high-school+ (no, yes); f) Hus-
band’s education, high-school+ (no, yes); g) Asian origin (no,
yes); h) Other household member working (no, yes). The re-
sults are shown in Fig. 3 for glasso [1], copula glasso [2], and
the proposed discrete copula glasso method, in addition to a
log-linear model with minimum sufficient statistics, proposed
by Whittaker [15]. The result from the proposed discrete cop-
ula glasso (see Fig. 3(d)) is almost identical to Whittaker’s re-
sult (see Fig. 3(a)), as only one edge dh is missing. However,
glasso [1] and continuous copula glasso [2] fail to infer the
graphical model, probably because both models are mostly
designed for continuous data.

Interestingly, in the discrete copula glasso, the variables
connected to a (“Wife economically active”) are c (“Husband
unemployed”), d (“Child≤ 4”), e (“Wife’s education”), and g
(“Asian origin”), which is identical to Whittaker’s results [15]
and results in [8, 16], which use MCMC simulations for all
variables and hence are computationally complex.

We also investigated the partial correlations for pairs of
variables. Whittaker [15] observed that the strongest pairwise
interaction is {b, d}, followed by {b, h}, {e, f} and {a, g}.
The order of those pairs is identical in the proposed discrete
copula glasso and the MCMC approach of [8, 16]. The lat-
ter two models learn the order of interactions based on the
Cramer’s V statistic.

The results for this dataset suggest that the proposed
method yields very similar results as Whittaker’s log-linear
model and the approach of [8, 16]. Whittaker’s log-linear
model, however, is not able to learn the sparsity structure in
an automated fashion. The approach of [8, 16] is computa-
tionally much more complex than the proposed approach.

5. CONCLUSION
We proposed novel learning algorithms for discrete copula
Gaussian graphical models, which can be applied to any
combinations of heterogeneous variables. Numerical results
for synthetic data show that the proposed method can pro-
duce better estimates than glasso [1] and continuous copula
glasso [2]. Moreover, results on real data suggest that the
proposed method yields similar results as for existing meth-
ods, while being more computationally efficient and more
generally applicable.
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