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ABSTRACT

In this paper, we propose a new method based on particle fil-
ters for maximum likelihood (ML) estimation of the parame-
ters of autoregressive conditional heteroscedasticity (ARCH)
and generalized autoregressive conditional heteroscedasticity
(GARCH) models. Our method is based on gradient descend
method and active set method for maximizing the likelihood
function over parameters under stationarity constraints. The
gradient of the likelihood function of observation given the
parameters of the model, which is needed for gradient based
optimization algorithm, is estimated using particle meth-
ods. Simulation results show the advantage of the proposed
method over competing techniques.

Index Terms— GARCH, ARCH, parameter estimation,
noisy observations, particle methods

1. INTRODUCTION

Parameter estimation is the backbone of all model based sig-
nal processing algorithms. The generalized autoregressive
conditional heteroscedasticity (GARCH) model was first in-
troduced by Bollerslev [1] as an extension of the autoregres-
sive conditional heteroscedasticity (ARCH) model developed
by Engle [2] to model econometric data. Since then, many
researchers have extended and used these models in several
speech and image processing applications. Cohen [3] mod-
eled the speech signal in the short time Fourier transform
(STFT) domain as a complex GARCH process and used this
model for speech enhancement. AR-GARCH model was uti-
lized for modeling speech signal in the time domain and for
developing voice activity detection (VAD) algorithms [4, 5].
Abdolahi et al. [6] used the parameters of the GARCH model
for speech recognition in Persian isolated digits. Noiboar and
Cohen [7] used the GARCH model for anomaly detection in
sonar images. In all of the above mentioned uses of GARCH
models in speech signal processing, the authors assume that
the parameters of the GARCH model are known or can be
estimated from a database.
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Parameter estimation methods for ARCH and GARCH
models, such as quasi maximum likelihood (QML) [8], two
stage least squares (TSLS) [9], and constrained two stage least
squares (CTSLS) [10], assume that the data are clean (without
any additive noise). So in most speech signal processing algo-
rithms these methods are often inapplicable due to presence
of additive noise. Recently, Mousazadeh and Cohen [11] pro-
posed an ML method for simultaneous parameter estimation
and state smoothing of complex (G)ARCH processes in the
presence of additive noise. In that work, it is assumed that the
probability density functions (pdfs) of the additive corrupting
noise and the process noise (vk in the definition of GARCH
(1)) are Gaussian. This assumption restricts the application of
the method in general cases. Poyiadjis et al. [12] introduced a
method for parameter estimation of general state-space mod-
els using particle methods. In their method, they find the ML
estimate of the parameters. The drawback of their method
is that it does not consider the cases that some constraints
such as stationarity are imposed on the model. ARCH and
GARCH parameter estimation in presence of noise is one of
these cases.

In this paper, we propose a gradient based technique for
estimating the parameters of ARCH and GARCH models in
presence of additive noise. More specifically, we use a gra-
dient descent method together with active set method to ob-
tain the maximum of the likelihood function. The gradient
of the likelihood function of noisy observations given the pa-
rameters which is needed for gradient based optimization al-
gorithm, is obtained by particle method. The reminder of this
paper is as follows. In Section 2, we formulate the problem
and introduce a novel technique for estimating the parameters
of ARCH and GARCH models in the presence of noise con-
sidering the stationarity constraints. Simulation results and
performance comparison are presented in Section 3. We con-
clude the paper in Section 4.

2. PROBLEM FORMULATION AND THE
PROPOSED METHOD FOR PARAMETER

ESTIMATION

GARCH model of order (q, p) is defined as [1]
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where θ = [c0, b1, · · · , bq, a1, · · · , ap] is the vector of param-
eters of the GARCH model, (·)T is the transpose operator and
vk’s are independent identically distributed random variables
with zero mean and unit variance. ARCH model is a spe-
cial case of GARCH model with ai = 0,∀i. Necessary and
sufficient conditions for stationarity with finite second order
moment are [1]

c0 > 0

bi ≥ 0 ; i = 1, 2, · · · , q
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ai < 1. (3)

Now, suppose that the observation signal, yk, is a GARCH
process corrupted with an additive noise, i.e.

yk = zk + nk (4)

where nk is the additive noise sequence. For the rest of the
paper we assume that the probability density functions of vk
and nk are completely known except for some unknown pa-
rameters such as the noise level. If we define the hidden state
vector as

xk = [zk · · · zk−q+1 σk · · · σk−p+1]
T (5)

then we will have

xk+1 = F (xk, vk,θ) (6)
yk = G (xk, nk,θ) (7)
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G (xk, nk,θ) =
[
1 0 · · · 0

]
xk + nk. (9)

Reducing this model to ARCH process corrupted with ad-
ditive noise is straightforward. It is worth mentioning that
if the probability density functions of vk and nk have some
unknown parameters, we can modify the vector of parame-
ters such that it includes these unknown parameters. Avail-
able methods for estimating the parameters in this general
state space (i.e. equations ) model are extended Kalman Fil-
ters (EKF), unscented Kalman filter (UKF) and particle filters
(PF)[13]. Poyiadjis et al. [12], introduced a method for pa-
rameter estimation in the general state-space model given by
(8) and (9), using particle methods. This algorithm is based on
finding the likelihood function of the observations in terms of
the vector of parameters θ i.e. p(y0, y1, · · · , yK−1; θ), using
particle methods and finding the maximum of this function by
a gradient decent method.

In our case, i.e. parameter estimation for ARCH and
GARCH models in presence of additive noise, stationarity
and finite second order moment constraints must be consid-
ered. Since the method presented in [12] gives an estimate
of the gradient vector of the probability density function of
the observations, we can use this estimate along with the
active set and gradient projection methods [14] to solve our
constrained maximization problem. The constraints on pa-
rameters which are given by (3) can be restated as follows

[
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= Aθ ≤
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(10)

where Id is d × d identity matrix, 1n×m is n×m matrix
with all of its elements equal to one, ε is a very small number
greater than zero. By a ≤ b, we mean that each element in
a is smaller than or equal to the corresponding element in b.
Our algorithm is proposed in Table 1. It is worth mention-
ing that the proposed algorithm can be used in any parameter
estimation problem with linear constraints. It is worth men-
tioning that the proposed method can be modified to obtain
a recursive ML algorithm, which can be applied to the case
where the parameters are time varying, see [11] for further
information.

In the algorithm given in Table 1, N is the number of
particles, yK−10 = {y0, y1, · · · , yK−1} and ζ̃θ(yk0 , χ

(i)
k ) and
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where gθ(yk|χ(i)
k ) and fθ(χ

(i)
k |χ

(i)
k−1) are conditional transi-

tion and observation distributions, respectively, i.e.,

yk|xk ∼ gθ(yk|xk) (13)
xk|xk−1 ∼ fθ(xk|xk−1) (14)

In this algorithm qθk(.|yk0 , χ
(i)
k−1) is the assumed distribution

and is case dependent. The best choice of this distribution
is p(xk|xk−1, yk0 ;θ) which is the conditional distribution of
the current state, xk, conditioned on the previous state and
yk0 . In most problems, computation of this distribution and
generating samples from it is almost impossible. So, the usual
choice for the distribution is the transition distribution, i.e.,

qθk(·|yk0 , χ
(i)
k−1) = fθk(·|χ

(i)
k−1). (15)

This algorithm can be easily applied to ARCH and GARCH
parameter estimation problems in presence of additive noise.
The main point is obtaining the conditional observation and
transition distributions as follows

gθ(yk|xk) = pn(yk − xk(1)) (16)
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where xk(j) is the j-th element of xk, δ(·) is the Dirac delta
function and pv and pn are the distributions of vk and nk,
respectively.

Table 1. Proposed algorithm for estimating the parameters of
a linearly constrained model using particle methods

1. Choose an initial value (θ0) for the parameter vector.
2. Find the set of active constraints and form the matrix
Ac by removing the rows corresponding to inactive
constraints from matrixA.

3. For k = 0 to k = K − 1 do the following
(a) For i = 1, 2, · · · , N sample
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g = ∇ log
(
p̂(yK−10 ;θ)

)
=
∑K−1
k=0

∑N
i=1 ρ

(i)
k∑N

i=1 a
(i)
k

.

5. Calculate the following quantities
P = I −AT

c (AcA
T
c )
−1Ac

d = PgT

6. If d = 0 then find α1 and α2 such that
α1 = max {α|+ αd, α ∈ R+}.
Select a value for α2 such that 0 ≤ α2 ≤ α1.
Set θ = θ + α2d and go to 2.

7. If d 6= 0, compute
λ = −AT

c (AcA
T
c )
−1Acg and do the following steps

(a) If for all j corresponding to active constraints the
j-th element of λ is greater or equal to zero, then
θ is optimum, and the algorithm is finished.

(b) Else, eliminate the row corresponding to the most
negative element of λ from the matrixAc

and go to 3.

3. SIMULATION RESULTS

In this section we investigate the performance of the proposed
method PCon (the algorithm depicted in Table 1) compared
with four ML methods. The first one, denoted by MLC, em-
ploys the clean data (unavailable in practical situations) for
estimating the parameters.The second one, denoted by MLN,
employs the noisy data for estimating the parameters assum-
ing that the data are clean. The third one, denoted by MLG,
is the one proposed in [11], assuming both the process noise
and corrupting noise are Gaussian. The last method, denoted
by PUnc (the algorithm presented in [12]) employs particle
methods without considering the stationarity constraints.
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Table 2. NRMSE in parameter estimation for different meth-
ods

NMSE MLC MLN MLG PUnc PCon
c0 0.2436 4.2774 0.4688 0.3945 0.2948
a1 0.2116 0.6594 0.4718 0.4175 0.2475
b1 0.2991 0.7414 0.6758 0.5432 0.3864

For this simulation, we used a GARCH(1, 1) process
with Laplace process noise, corrupted by a zero mean Gaus-
sian white noise with known variance. The signal to noise
ratio (SNR) was 10dB, the number of available data was
K = 2000, and the number of particles was N = 100. The
value of the parameter α2 was selected such that ‖α2d‖ =
min (‖α1d‖, 0.01), where ‖α‖ is the length of the vec-
tor α. The parameter of the GARCH process is θ =
[2.00 0.50 0.20]. For evaluating the performance of our
method we used the normalized root means quare error
(NRMSE) in parameter estimation which is obtained using
2000 Monte-Carlo realizations. The simulation results are
depicted in Table 2. It is apparent that the proposed method
which considers the stationarity condition has a better perfor-
mance than that of competing methods except MLC which
is not applicable to noisy data. The main drawback of our
method is its high computational load. Some techniques are
available to decrease this computational load drastically. For
more information on these methods, see [15].

4. CONCLUSION AND REMARKS

We have proposed an algorithm based on particle methods for
parameter estimation of ARCH and GARCH models in pres-
ence of additive noise. The main advantages of our method
over the competing parameter estimation methods are dealing
with contaminating noise and non-Gaussian distributions of
the process noise and corrupting noise. The proposed method
also guarantees a stationary model. Our method can be used
in other state space parameter estimation problems having
linear constraints. It is worth mentioning that the proposed
method can be generalized such that it handles nonlinear con-
straints as well. The main drawback of our method is its
high computational load. Some techniques are available to
decrease this computational load.
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