
AN EFFICIENT STOCHASTIC APPROXIMATION EM ALGORITHM
USING CONDITIONAL PARTICLE FILTERS

Fredrik Lindsten

Division of Automatic Control, Linköping University, Linköping, Sweden, e-mail: lindsten@isy.liu.se.

ABSTRACT

I present a novel method for maximum likelihood parameter estima-
tion in nonlinear/non-Gaussian state-space models. It is an expecta-
tion maximization (EM) like method, which uses sequential Monte
Carlo (SMC) for the intermediate state inference problem. Contrary
to existing SMC-based EM algorithms, however, it makes efficient
use of the simulated particles through the use of particle Markov
chain Monte Carlo (PMCMC) theory. More precisely, the proposed
method combines the efficient conditional particle filter with an-
cestor sampling (CPF-AS) with the stochastic approximation EM
(SAEM) algorithm. This results in a procedure which does not rely
on asymptotics in the number of particles for convergence, mean-
ing that the method is very computationally competitive. Indeed, the
method is evaluated in a simulation study, using a small number of
particles, with promising results.

1. INTRODUCTION

State-space models (SSMs) are commonly used in statistical signal
processing to model dynamical systems. Methods such as sequen-
tial Monte Carlo (SMC), have emerged to allow inference beyond
the linear Gaussian case [1, 2]. However, estimation of fixed model
parameters remains a challenging problem. We consider here a gen-
eral, discrete-time SSM with state xt ∈ X and observation yt ∈ Y,
parameterized by some unknown parameter θ ∈ Θ,

xt+1 ∼ fθ(xt+1 | xt), yt ∼ gθ(yt | xt).

We observe a batch of measurements y1:T = {y1, . . . , yT } and
seek to identify θ offline. Methods addressing this problem are often
iterative, in the sense that they iterate between updating θ and updat-
ing/estimating the latent states x1:T . Examples are the expectation
maximization (EM) algorithm [3] for maximum likelihood (ML) in-
ference and Gibbs sampling [4] for Bayesian inference. SMC can
naturally be used within these methods to address the intermedi-
ate state inference problem at each iteration. For instance, particle
smoothing (PS) has been used within the EM algorithm (PSEM) for
challenging identification problems [5, 6, 2].

However, if used in a standard way, a large number of particles
is typically required to obtain accurate state inference results. Since
this has to be done at each iteration of the top level identification
algorithm, the resulting method will be very computationally inten-
sive. Recently, however, a framework for Bayesian inference re-
ferred to as particle Markov chain Monte Carlo (PMCMC) has been
developed [7]. PMCMC uses SMC within MCMC, but do so in a
way which ensures that the methods are, in some sense, exact, for

This work was supported by: the project Calibrating Nonlinear Dynam-
ical Models (Contract number: 621-2010-5876) funded by the Swedish Re-
search Council and CADICS, a Linneaus Center also funded by the Swedish
Research Council.

any number of particles (see [7] for further discussion). Further-
more, a certain branch of PMCMC, based on so called conditional
particle filters (CPFs), has been found to make very efficient use of
the simulated particles [8, 9, 10]. This is achieved by propagating
information from one iteration to the next, by conditioning the PF
on previously simulated particles.

The purpose of this contribution is to illustrate that these at-
tractive methods are not exclusive to the Bayesian. Indeed, we de-
velop a method for ML inference, i.e. the problem of finding θ̂ML =
arg maxθ pθ(y1:T). The method is a combination of stochastic ap-
proximation EM (SAEM) [11] and the conditional PF with ancestor
sampling (CPF-AS) [8]. There have been previous contributions on
combining PMCMC with SAEM [12, 13]. However, these methods
differ from the present contribution, in that they are based on the
particle independent Metropolis-Hastings kernel, which is not able
to reuse information across iterations, as is done in CPF-AS.

2. THE EM, MCEM AND SAEM ALGORITHMS

To introduce the methods that we will be working with we consider
a general missing data model. The observed variable is denoted y
and the latent variable is denoted z. In the state-space setting, we
thus have y = y1:T and z = x1:T . Let pθ(y) be the likelihood
of the data, parameterized by θ ∈ Θ. For each θ, the complete
data likelihood is given by pθ(z, y) and the posterior of z given y is
pθ(z | y) = pθ(z, y)/pθ(y).

Define, Q(θ, θ′) =
∫

log pθ(z, y)pθ′(z | y) dz. The EM algo-
rithm [3] is an iterative method, which maximizes pθ(y) by itera-
tively maximizing the auxiliary quantity Q(θ, θ′). It is useful when
maximization of θ 7→ Q(θ, θ′), for fixed θ′, is simpler than direct
maximization of the likelihood, θ 7→ pθ(y). The procedure is initial-
ized at some θ0 ∈ Θ and then iterates between two steps, expectation
(E) and maximization (M),

(E) Compute Q(θ, θk−1).

(M) Compute θk = arg maxθ∈Θ Q(θ, θk−1).

The resulting sequence {θk}k≥0 will, under weak assumptions, con-
verge to a stationary point of the likelihood pθ(y).

We shall throughout this work assume that the M-step can be
carried out straightforwardly, which is the case for many models en-
countered in practice. For the E-step, however, we note that we have
to compute an expectation under the posterior pθ′(z | y). In many
situations, this computation is complicated or even intractable. One
way to address this issue is to compute the E-step using Monte Carlo
integration, leading to the MCEM algorithm [14]. Assume that it is
possible to simulate from the posterior pθ′(z | y). Then, at iteration
k, the E-step is replaced by the following;

(E′) Generate Mk realizations {zj}Mk
j=1 from pθk−1(z | y) and

compute, Q̃k(θ) = M−1
k

∑Mk
j=1 log pθ(z

j , y).

6274978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

The M-step is left unchanged, but now the Monte Carlo approxima-
tion Q̃k(θ) is maximized in place of Q(θ, θk−1).

The MCEM algorithm can be very useful in situations where the
E-step of the EM algorithm is intractable. A problem with MCEM,
however, is that it relies on the number of simulationsMk to increase
with k to be convergent [2, 15]. That is, the method can be thought
of as doubly asymptotic, since it requires the number of iterations
to tend to infinity, k → ∞, as well as the number of simulations,
Mk →∞. Furthermore, a complete set of simulated values {zj}Mk

j=1

has to be generated at each iteration of the algorithm. After making
an update of the parameter, these values are discarded and a new set
has to be simulated at the next iteration.

To be able to make more efficient use of the simulated vari-
ables, a related method, referred to as stochastic approximation EM
(SAEM) was proposed by [11]. This method uses a stochastic ap-
proximation update of the auxiliary quantity Q,

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk

(
1

mk

mk∑
j=1

log pθ(z
j , y)

)
. (2)

The E-step is thus replaced by the following;

(E′′) Generate mk realizations {zj}mk
j=1 from pθk−1(z | y) and

update Q̂k(θ) according to (2).

In (2), {γk}k≥1 is a decreasing sequence of positive step sizes, sat-
isfying the usual stochastic approximation conditions,

∑
k γk = ∞

and
∑
k γ

2
k < ∞. In SAEM, all simulated values contribute to

Q̂k−1(θ), but they are down-weighted using a forgetting factor given
by the step size. Under appropriate assumptions, SAEM can be
shown to converge for fixed mk (e.g. mk ≡ 1), as k → ∞ [11, 2].
When the simulation step is computationally involved, there is a con-
siderable computational advantage of SAEM over MCEM [11].

3. CONDITIONAL PARTICLE FILTER SAEM

We now turn to the new procedure; SAEM using conditional particle
filters (CPF). We refer to this method as CPF-SAEM.

3.1. Markovian stochastic approximation

Let us return to our original problem; inference in nonlinear state-
space models. The latent variable posterior is then given by
pθ(x1:T | y1:T), i.e. by the joint smoothing distribution. This
distribution is intractable to compute, as well as to sample from, for
the models under study. We can thus not employ MCEM or SAEM
directly. To address this issue, it has been suggested to use SMC, i.e.
particle smoothers (PS), to compute the E-step of the EM algorithm
[5, 6, 2]. This leads to an SMC-analogue of MCEM, which we
refer to as PSEM. Unfortunately, PSEM inherits the drawbacks of
MCEM. That is, it relies on double asymptotics for convergence and
is not able to reuse the simulated values (i.e. the particles) across
iterations.

For instance, assume that we employ the forward filter/backward
simulator particle smoother by [16] in PSEM. At iteration k, we use
Nk particles and backward trajectories, with a computational com-
plexity of O(N2

k). For this approach to be successful, we need to
take Nk large (in fact Nk → ∞ as k → ∞) which leads to a
very computationally costly E-step. If we instead take an SAEM
approach, it is sufficient to generate a single sample at each iteration
(mk ≡ 1), reducing the computational cost to O(Nk). However,
we still need to take Nk large to get an accurate particle approxima-
tion from the PF. Furthermore, it is not clear how the approximation

error for finite Nk will affect the parameter estimates in the SAEM
algorithm.

To avoid this, and thus be able to reduce the computational com-
plexity, we will use a Markovian version of stochastic approximation
[17, 18]. It has been recognized that it not necessary to sample ex-
actly from the posterior distribution of the latent variables, to assess
convergence of the SAEM algorithm. Instead, it is sufficient to sam-
ple from a family of Markov kernels {Mθ : θ ∈ Θ}, leaving the fam-
ily of posteriors invariant [19]. In our case, we thus seek a family of
Markov kernels on XT , such that, for each θ ∈ Θ,Mθ(dx1:T | x′1:T)
leaves the joint smoothing distribution pθ(x1:T | y1:T) invariant.

Assume for the time being that this family of kernels is available.
At iteration k of the SAEM algorithm, let θk−1 be the previous value
of the parameter estimate and let x1:T [k − 1] be the previous draw
from the Markov kernel. Then, we proceed by sampling

x1:T [k] ∼Mθk−1(dx1:T | x1:T [k − 1]), (3)

and updating the auxiliary quantity according to

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk log pθ(y1:T , x1:T [k]). (4)

This quantity is then maximized w.r.t. θ in the M-step, analogously
to the standard SAEM algorithm.

3.2. Conditional particle filter with ancestor sampling

To find the sought family of Markov kernels, we will make use of
PMCMC theory [7]. More precisely, I suggest to run a conditional
particle filter with ancestor sampling (CPF-AS). The CPF-AS has
previously been used for Gibbs sampling in a PMCMC setting [8].
Other options are available, e.g. to use the original CPF by [7] or the
CPF with backward simulation, originally proposed by [20]. How-
ever, we focus here on CPF-AS since ancestor sampling has been
found to considerably improve the mixing over the basic CPF. Fur-
thermore, it can be implemented in a forward only recursion, its
computational cost is linear in the number of particles and it al-
lows for a simple type of Rao-Blackwellization (as will be discussed
later).

The CPF-AS procedure is an SMC sampler, akin to a standard
PF but with the difference that one particle at each time step is spec-
ified a priori. Let these prespecified particles be denoted x′1:T =
{x′1, . . . , x′T }. The method is most easily described as an auxil-
iary PF (see e.g. [1, 21, 22] for an introduction). As in a standard
auxiliary PF, the sequence of distributions pθ(x1:t | y1:t), for t =
1, . . . , T , is approximated sequentially by collections of weighted
particles. Let {xi1:t−1, w

i
t−1}Ni=1 be a weighted particle system tar-

geting pθ(x1:t−1 | y1:t−1). That is, the particle system defines an
empirical distribution,

p̂Nθ (dx1:t−1 | y1:t−1) ,
N∑
i=1

wit−1∑
l w

l
t−1

δxi1:t−1
(dx1:t−1), (5)

which approximates the target. To propagate this sample to time t,
we introduce the auxiliary variables {ait}Ni=1, referred to as ancestor
indices. To generate a specific particle xit at time t, we first sample
the ancestor index with P (ait = j) ∝ wjt−1. Then, xit is sampled
from some proposal kernel qθ,t,

xit ∼ qθ,t(xt | x
ait
t−1, yt). (6)

Hence, ait is the index of the ancestor particle at time t−1, of particle
xit. The particle trajectories can then be augmented according to

xi1:t = {xa
i
t

1:t−1, x
i
t}. (7)

6275

In this formulation, the resampling step is implicit and it corresponds
to sampling the ancestor indices.

Now, in a standard auxiliary PF, we would repeat this proce-
dure for each i = 1, . . . , N , to generate N particles at time t. In
CPF-AS, however, we condition on the event that x′t is contained
in the collection {xit}Ni=1. To accomplish this, we sample accord-
ing to (6) only for i = 1, . . . , N − 1. The N th particle is then set
deterministically; xNt = x′t.

To be able to construct the N th particle trajectory as in (7), the
conditioned particle has to be associated with an ancestor at time
t − 1. That is, we need to generate a value for the ancestor variable
aNt . In CPF-AS, this is done in a so called ancestor sampling step,
in which aNt is sampled conditionally on x′t. From Bayes’ rule, it
follows that pθ(xt−1 | x′t, y1:t) ∝ fθ(x

′
t | xt−1)pθ(xt−1 | y1:t−1).

By plugging (5) into the above expression, we arrive at the approxi-
mation,

p̂Nθ (dxt−1 | x′t, y1:t) =

N∑
i=1

wit−1fθ(x
′
t | xit−1)∑

l w
l
t−1fθ(x

′
t | xlt−1)

δxit−1
(dxt−1).

To sample an ancestor particle for x′t, we draw from this em-
pirical distribution. That is, we sample the ancestor index with
P (aNt = j) ∝ wjt−1fθ(x

′
t | xjt−1).

Finally, all the particles, for i = 1, . . . , N , are assigned im-
portance weights, analogously to a standard auxiliary PF; wit =

Wθ,t(x
i
t, x

ait
t−1), where the weight function is given by,

Wθ,t(xt, xt−1) ,
gθ(yt | xt)fθ(xt | xt−1)

qθ,t(xt | xt−1, yt)
. (8)

This results in a new weighted particle system {xi1:t, w
i
t}Ni=1, tar-

geting the joint smoothing distribution at time t. The method is ini-
tialised by sampling from a proposal density xi1 ∼ qθ,1(x1 | y1) for
i = 1, . . . , N − 1 and setting xN1 = x′1. The initial particles are as-
signed weights wi1 = Wθ,1(xi1) where the weight function is given
by W θ

1 (x1) , gθ(y1 | x1)pθ(x1)/qθ,1(x1 | y1). The CPF-AS is
summarized in Algorithm 1.

Algorithm 1 CPF with ancestor sampling, conditioned on {x′1:T }
1: Draw xi1 ∼ qθ,1(x1 | y1) for i = 1, . . . , N − 1.

2: Set xN1 = x′1.

3: Set wi1 = Wθ,1(xi1) for i = 1, . . . , N .

4: for t = 2 to T do
5: Draw ait with P (ait = j) ∝ wjt−1 for i = 1, . . . , N − 1.

6: Draw xit ∼ qθ,t(xt | x
ait
t−1, yt) for i = 1, . . . , N − 1.

7: Draw aNt with P (aNt = j) ∝ wjt−1fθ(x
′
t | xjt−1).

8: Set xNt = x′t.

9: Set xi1:t = {xa
i
t

1:t−1, x
i
t} for i = 1, . . . , N .

10: Set wit = Wθ,t(x
ait
t−1, x

i
t) for i = 1, . . . , N .

11: end for

It might not be obvious why it is attractive to condition the PF
on a prespecified set of particles. The reason for why this is useful
is that it implies an invariance property which is key to our develop-
ment. To state this more formally, we first make a standard assump-
tion on the support of the proposal kernels used in the PF.

(A1) For any θ ∈ Θ and any t ∈ {1, . . . , T}, Sθt ⊂ Qθt where,

Sθt = {x1:t ∈ Xt : pθ(x1:t | y1:t) > 0},

Qθt = {x1:t ∈ Xt : qθ,t(xt | xt−1, yt)pθ(x1:t−1 | y1:t−1) > 0}.

The key property of CPF-AS can now be stated as follows.

Proposition 1. Assume (A1). Then, for any θ ∈ Θ and any N ≥ 2,
the procedure;

(i) Run Algorithm 1 conditionally on x′1:T ;
(ii) Sample x?1:T with P (x?1:T = xi1:T) ∝ wiT ;

defines a p-irreducible and aperiodic Markov kernel on XT , with
invariant distribution pθ(x1:T | y1:T).

Proof. The invariance property follows by the construction of the
CPF-AS in [8], and the fact that the law of x?1:T is independent of
permutations of the particle indices. This allows us to always place
the conditioned particles at the N th position. Irreducibility and ape-
riodicity follows from [7, Theorem 5].

In other words, if x′1:T ∼ pθ(x1:T | y1:T) and we sample x?1:T

according to the procedure in Proposition 1, then, for any number of
particlesN , it holds that x?1:T ∼ pθ(x1:T | y1:T). To understand this
result, it can be instructive to think about the extreme cases, N = 1
and N = ∞, respectively. For N = 1, since we condition on x′1:T ,
the sampling procedure will simply return x?1:T = x′1:T . Since x′1:T

is distributed according to the exact smoothing distribution, then so
is x?1:T (though, with correlation 1 between x?1:T and x′1:T). For
N = ∞, on the other hand, the conditioning will have a negligible
effect on Algorithm 1. That is, the CPF-AS reduces to a standard
PF, using an infinite number of particles. Since the PF in this case
exactly recovers the joint smoothing distribution, it again holds that
x?1:T ∼ pθ(x1:T | y1:T), but now x?1:T is independent of x′1:T .

Intuitively, using a fixed N can be though of as an interpolation
between these two results. The invariance property will hold for
any N , but the larger we take N , the smaller the correlation will be
between x?1:T and x′1:T . However, it has been experienced in practice
that the correlation drops of very quickly as N increases [8, 9], and
for many models a moderate N (e.g. in the range 5–20) is enough to
get a rapidly mixing kernel.

3.3. Final identification algorithm

From Proposition 1, if follows that CPF-AS defines a Markov kernel
with the invariance properties needed for the SAEM algorithm. Be-
fore stating the final identification algorithm, however, we note that
it is possible to reuse all N particle trajectories when updating the
auxiliary quantity (4). That is, we update Q̂k according to,

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk

N∑
i=1

wiT∑
l w

l
T

log pθ(y1:T , x
i
1:T).

(9)

Let J be the random index of the extracted particle trajectory in
Proposition 1, i.e. x?1:T = xJ1:T . Then, (9) is simply a Rao-
Blackwellization over J . Consequently, the variance of (9) will
be lower than that of (4). It should be noted, however, that the vari-
ance reduction in general will be quite small, due to path degeneracy
of the CPF-AS algorithm.

We summarize the proposed method for maximum likelihood
inference in nonlinear state-space models, CPF-SAEM, in Algo-
rithm 2. The method is run until convergence, as checked by some
standard convergence criterion.

6276

Algorithm 2 CPF-SAEM

1: Set θ0 and x1:T [0] arbitrarily. Set Q̂0(θ) ≡ 0.

2: for k ≥ 1 do
3: Generate {xi1:T , w

i
T }Ni=1 by running Algorithm 1, condi-

tioned on x1:T [k − 1] and targeting pθk−1(x1:T | y1:T).

4: Compute Q̂k(θ) according to (9).

5: Compute θk = arg maxθ∈Θ Q̂k(θ).

6: Sample J with P (J = i) ∝ wiT and set x1:T [k] = xJ1:T .

7: end for

−1

−0.5

0

0.5

1

θ
k
−
θ̂ M

L

k = 100 k = 1000 k = 10000 k = 100000

10 ×ak
σ2
v,k

σ2
e,k

Fig. 1. Box plots of θk − θ̂ML for different values of k, illustrat-
ing the convergence to the true MLE. The difference (ak − âML) is
multiplied by a factor 10 for clarity.

4. NUMERICAL ILLUSTRATION

To start with, we evaluate CPF-SAEM on a 1st order linear system,
for which the exact ML estimator (MLE) is readily available. The
system is given by xt+1 = axt + vt and yt = xt + et with a =
0.9 and where et and vt are independent white Gaussian sequences,
with variances σ2

v = σ2
e = 1. We simulate 100 batches of data

from the system, each with T = 100. We then run Algorithm 2
for each batch to identify θ = (a, σ2

v, σ
2
e). We use NCPF = 15

particles and a bootstrap proposal kernel in the CPF-AS. We let γk ≡
1 for k ≤ 100, and γk ∼ k−0.7 for k > 100. This allows for a
rapid change in the parameter estimates during the initial iterations,
followed by a convergent phase. We are interested in comparing
the estimates with the true MLE, θ̂ML (this is computed by running
an exact EM algorithm for 10 000 iterations). We thus compute the
differences θk − θ̂ML for k ∈ {102, 103, 104, 105}. Box plots of
these differences, over the 100 data batches, are given in Figure 1.
Despite the fact that we use a fixed (and small) number of particles,
CPF-SAEM converges to the true MLE as k increases.

As a second, more challenging, example we consider the stan-
dard nonlinear time series model, used among others by [5, 23],

xt+1 = 0.5xt + 25
xt

1 + x2
t

+ 8 cos(1.2t) + vt, (10a)

yt = 0.05x2
t + et, (10b)

where vt and et are independent white Gaussian sequences, with
variances σ2

v = 1 and σ2
e = 0.1, respectively. We use CPF-SAEM

with NCPF = 15 particles to identify θ = (σ2
v, σ

2
e). The step size

is set as above. As a comparison, we use the PSEM algorithm [5],
based on a forward filtering/backward simulation (FFBS) smoother
[16], with NPS = 1500 forward filter particles and MPS = 300
backward trajectories.

10
0

10
1

10
2

10
3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Iteration number

σ
v

True
CPF−SAEM

10
0

10
1

10
2

10
3

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Iteration number

σ
v

True
PSEM

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

Iteration number

σ
e

True
CPF−SAEM

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

Iteration number

σ
e

True
PSEM

Fig. 2. Parameter estimates over 20 iterations for CPF-SAEM (left)
and PSEM (right). Each line corresponds to one realization of data.
The true values are σv = 1 and σe =

√
0.1, respectively.

It is interesting to note that the computational complexity of
CPF-SAEM scales like O(NCPFT) per iteration. Similarly, the com-
plexity of PSEM is O(NPSMPST)1. There is a striking difference
where, if we neglect all computational overhead, CPF-SAEM is a
factor MPSNPS/NCPF = 30 000 less costly than PSEM!

Despite this difference, we compare the methods over equally
many iterations. We generate 20 independent batches of data, each
consisting of T = 1500 observations. For each data set, we run
CPF-SAEM and PSEM for 2 000 iterations. The methods are ini-
tialized uniformly at random, θ0 ∈ [1, 2]2. The results are given
in Figure 2. There is a clear difference between the methods, where
CPF-SAEM outperforms PSEM in both variance and bias (and, most
notably, in computational time). Despite the fact that we use a fixed
number of particles NCPF = 15 at each iteration, CPF-SAEM con-
verges as we increase the number of iterations. This is not the case
for PSEM, as this would require NPS →∞ and MPS →∞.

5. CONCLUSIONS

Conditional particle filters (CPFs) provide an elegant way of us-
ing SMC to construct Markov kernels which leave the exact joint
smoothing distribution invariant. This holds true for any number
of particles. With ancestor sampling, it is also possible to obtain a
rapidly mixing kernel with a very modest number of particles. This
is a key observation, meaning that we have to revise the common
notion that SMC necessarily implies a high computational cost. In
this contribution, the CPF with ancestor sampling has been com-
bined with a stochastic approximation EM (SAEM) algorithm. The
resulting method, CPF-SAEM, was shown to be an efficient method
for maximum likelihood parameter estimation in nonlinear/non-
Gaussian state-space models. Indeed, CPF-SAEM outperformed a
state of the art particle-based EM algorithm in a simulation study,
both in terms of bias, variance and computation time.

1Asymptotically (as NPS → ∞), this can be reduced to O(NPST) by
using a rejection-sampling-based FFBS [24]. In practice, however, the con-
stants can be quite large and the actual gain limited [25, 26].

6277

6. REFERENCES

[1] A. Doucet and A. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in The Oxford Handbook of
Nonlinear Filtering, D. Crisan and B. Rozovsky, Eds. Oxford
University Press, 2011.

[2] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden
Markov Models, Springer, 2005.

[3] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the
Royal Statistical Society, Series B, vol. 39, no. 1, pp. 1–38,
1977.

[4] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 6,
no. 6, pp. 721–741, 1984.

[5] T. B. Schön, A. Wills, and B. Ninness, “System identification
of nonlinear state-space models,” Automatica, vol. 47, no. 1,
pp. 39–49, 2011.

[6] J. Olsson, R. Douc, O. Cappé, and E. Moulines, “Sequential
Monte Carlo smoothing with application to parameter estima-
tion in nonlinear state-space models,” Bernoulli, vol. 14, no. 1,
pp. 155–179, 2008.

[7] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov
chain Monte Carlo methods,” Journal of the Royal Statistical
Society: Series B, vol. 72, no. 3, pp. 269–342, 2010.

[8] F. Lindsten, M. I. Jordan, and T. B. Schön, “Ancestor sampling
for particle Gibbs,” in Proceedings of the 2012 Conference on
Neural Information Processing Systems (NIPS), Lake Tahoe,
NV, USA, Dec. 2012.

[9] F. Lindsten and T. B. Schön, “On the use of backward sim-
ulation in the particle Gibbs sampler,” in Proceedings of the
2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012.

[10] N. Whiteley, C. Andrieu, and A. Doucet, “Efficient Bayesian
inference for switching state-space models using discrete par-
ticle Markov chain Monte Carlo methods,” Tech. Rep., Bristol
Statistics Research Report 10:04, 2010.

[11] B. Delyon, M. Lavielle, and E. Moulines, “Convergence of a
stochastic approximation version of the EM algorithm,” The
Annals of Statistics, vol. 27, no. 1, pp. 94–128, 1999.

[12] C. Andrieu and M. Vihola, “Markovian stochastic approxima-
tion with expanding projections,” arXiv.org, arXiv:1111.5421,
Nov. 2011.

[13] S. Donnet and A. Samson, “EM algorithm coupled with par-
ticle filter for maximum likelihood parameter estimation of
stochastic differential mixed-effects models,” Tech. Rep. hal-
00519576, v2, Université Paris Descartes, MAP5, 2011.

[14] G. C. G. Wei and M. A. Tanner, “A Monte Carlo implementa-
tion of the EM algorithm and the poor man’s data augmentation
algorithms,” Journal of the American Statistical Association,
vol. 85, no. 411, pp. 699–704, 1990.

[15] G. Fort and E. Moulines, “Convergence of the Monte Carlo ex-
pectation maximization for curved exponential families,” The
Annals of Statistics, vol. 31, no. 4, pp. 1220–1259, 2003.

[16] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smooth-
ing for nonlinear time series,” Journal of the American Statis-
tical Association, vol. 99, no. 465, pp. 156–168, Mar. 2004.

[17] A. Benveniste, M. Métivier, and P. Priouret, Adaptive algo-
rithms and stochastic approximations, Springer-Verlag, New
York, USA, 1990.

[18] C. Andrieu, E. Moulines, and P. Priouret, “Stability of stochas-
tic approximation under verifiable conditions,” SIAM Jour-
nal on Control and Optimization, vol. 44, no. 1, pp. 283–312,
2005.

[19] E. Kuhn and M. Lavielle, “Coupling a stochastic approxima-
tion version of EM with an MCMC procedure,” ESAIM: Prob-
ability and Statistics, vol. 8, pp. 115–131, 2004.

[20] N. Whiteley, “Discussion on Particle Markov chain Monte
Carlo methods,” Journal of the Royal Statistical Society: Se-
ries B, 72(3), p 306–307, 2010.

[21] F. Gustafsson, “Particle filter theory and practice with posi-
tioning applications,” IEEE Aerospace and Electronic Systems
Magazine, vol. 25, no. 7, pp. 53–82, 2010.

[22] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxil-
iary particle filters,” Journal of the American Statistical Asso-
ciation, vol. 94, no. 446, pp. 590–599, 1999.

[23] O. Cappé, “Online sequential Monte Carlo EM algorithm,” in
Proceedings of the IEEE Workshop Statististical Signal Pro-
cess (SSP), Cardiff, Wales, UK, Sept. 2009.

[24] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential
Monte Carlo smoothing for general state space hidden Markov
models,” Annals of Applied Probability, vol. 21, no. 6, pp.
2109–2145, 2011.

[25] E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön, “Adap-
tive stopping for fast particle smoothing,” in Proceedings of the
38th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Vancouver, Canada, May 2013.

[26] P. Bunch and S. Godsill, “Improved particle approximations
to the joint smoothing distribution using Markov chain Monte
Carlo,” IEEE Transactions on Signal Processing, vol. 61, no.
4, pp. 956–963, 2013.

6278

