
DISTRIBUTED PARTICLE FILTERING IN THE PRESENCE OF

MUTUALLY CORRELATED SENSOR NOISES

Ondrej Hlinka and Franz Hlawatsch

Institute of Telecommunications, Vienna University of Technology, Austria ({ohlinka,fhlawats}@nt.tuwien.ac.at)

ABSTRACT

We propose two distributed particle filter (DPF) algorithms for sen-
sor networks with mutually correlated measurement noises at differ-
ent sensors. With both algorithms, each sensor runs a local parti-
cle filter that knows the global (all-sensors) likelihood function and
is thus able to compute a global state estimate based on the mea-
surements of all sensors. We propose two alternative distributed,
consensus-based methods for computing the global likelihood func-
tion at each sensor. Simulation results for a target tracking prob-
lem demonstrate that both DPF algorithms exhibit excellent perfor-
mance, however with very different communications requirements.

Index Terms— Distributed particle filter, correlated sensor noises,
consensus, distributed target tracking, sensor network.

1. INTRODUCTION

Contribution and relation to previous work. For distributed se-
quential state estimation in wireless sensor networks without a fu-
sion center, distributed particle filters (DPFs) are attractive solutions
in nonlinear and/or non-Gaussian scenarios [1]. In particular, DPFs
that employ consensus algorithms (e.g., [2–5]) are advantageous be-
cause they are robust to sensor and communication link failures and
can obtain a global estimate at each sensor. To the best of our knowl-
edge, all the existing consensus-based DPFs rely on the assumption
that the measurement noises at the various sensors are mutually un-
correlated. However, there are many applications where this assump-
tion is not satisfied. An example is given by acoustic measurements
corrupted by an interfering ambient sound source (e.g., wind).

In this paper, we propose two consensus-based DPFs for addi-
tive Gaussian measurement noises that may be mutually correlated.
The proposed DPFs extend the DPFs presented in [3,4] and in [5]—
which assume uncorrelated measurement noises—to the correlated
case. In both DPFs, each sensor runs a local particle filter (PF) that
obtains a global estimate (it is “global” in that it is based on the
measurements of all sensors). The calculation of the weights at the
local PFs uses the global likelihood function (GLF), which has to
be provided to each sensor by a distributed computation scheme. In
the first DPF, as in [3, 4], the value of the GLF for each particle is
computed using a separate consensus algorithm. In the second DPF,
inspired by the likelihood consensus introduced in [5], consensus al-
gorithms are used to compute the coefficients of a basis expansion
approximation of the GLF.

Paper outline. In Section 2, we introduce the system model and
briefly review sequential Bayesian estimation. A generic DPF al-
gorithm using the GLF is described in Section 3. In Section 4, we
present two alternative methods for a distributed calculation of the
GLF for correlated sensor noises. Finally, Section 5 demonstrates
the excellent performance of our DPFs for a target tracking problem.

This work was supported by the Austrian Science Fund (FWF) under
grant S10603.

2. SYSTEM MODEL

We consider a random, time-varying state vector xn = (xn,1 · · ·
xn,M)⊤of dimension M . The state evolves according to

xn = gn(xn−1,un) , n = 1, 2, . . . , (1)

where gn(· ,·) is a generally nonlinear function and un is white driv-
ing noise with a known probability density function (pdf) f(un). At
time n, xn is sensed by a network of K sensors according to the
sensor measurement models

zn,k = hn,k(xn) + vn,k , k = 1, 2, . . . ,K . (2)

Here, zn,k of dimension Nn,k is the local measurement vector of
sensor k at time n, hn,k(·) is a generally nonlinear local measure-
ment function, and vn,k is a local measurement noise vector. We
assume that for any given n, the vn,k for k ∈ {1, . . . ,K} are jointly
Gaussian with zero mean; that vn,k and vn′,k′ are independent for
n 6= n′, and that vn,k is independent of the driving noise un′ for
all n′. However, for any given n, we allow the noises at different
sensors, vn,k and vn,k′ for k 6= k′, to be correlated.

With (2), the total (all-sensors) measurement model is given by

zn = hn(xn) + vn , (3)

where zn , (z⊤n,1 · · · z
⊤
n,K)⊤ is the total measurement vector of

dimension Nn =
∑K

k=1Nn,k , hn(·) , (h⊤
n,1(·) · · · h

⊤
n,K(·))⊤,

and vn , (v⊤
n,1 · · · v

⊤
n,K)⊤∼ N (0,Cn). We assume that sensor k

knows gn(· ,·) and hn,k(·) for all n, but not hn,k′(·) for k′6=k.
The state-transition model (1) and the measurement model (3) to-

gether with our statistical assumptions determine the state-transition
pdf f(xn|xn−1), the local likelihood function f(zn,k|xn), and the
GLF f(zn|xn). In particular, the GLF is given by

f(zn|xn) = f(vn)
∣

∣

vn = zn−hn(xn)
= Cn exp

(

−
1

2
Sn(zn,xn)

)

,

(4)
where Cn , 1/

√

(2π)Nn det{Cn} and

Sn(zn,xn) , [zn−hn(xn)]
⊤
Qn [zn−hn(xn)] , (5)

with the precision matrix Qn ,C−1
n (Cn is assumed nonsingular).

Due to (4), calculation of the GLF f(zn|xn) (up to the factor Cn,
which is irrelevant to our estimation task) reduces to calculation of
Sn(zn,xn) in (5). We note that, in accordance with the stacked

structure of vn = (v⊤
n,1 · · · v

⊤
n,K)⊤, the Nn×Nn precision matrix

Qn has a block structure with K2 blocks Qn;k,k′ of dimensions
Nn,k×Nn,k′ . Using these blocks, we can expand (5) as

Sn(zn,xn)

=
K
∑

k=1

K
∑

k′=1

[zn,k−hn,k(xn)]
⊤
Qn;k,k′ [zn,k′−hn,k′(xn)] . (6)

6269978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Our goal is to estimate the state xn using the measurements of all

sensors from time 1 to time n, z1:n , (z⊤1 · · · z⊤n)⊤. We consider
the minimum mean-square error (MMSE) estimator [6]

x̂
MMSE
n , E{xn|z1:n} =

∫

RM

xn f(xn|z1:n) dxn . (7)

The posterior pdf f(xn|z1:n) in (7) can be calculated sequentially
from the previous posterior f(xn−1|z1:n−1) and the GLF f(zn|xn)
[7]. A computationally feasible approximation of this sequential
MMSE state estimation is provided by the PF [8–10], which rep-
resents f(xn|z1:n) by samples/particles and associated weights.

The total measurement noise vector vn is a zero-mean Gaussian
Markov random field [11], whose distribution is described by the
precision matrix Qn. Gaussian Markov random fields are frequently
used to model spatial correlations (e.g., [11–13]). In applications,
Qn tends to be approximately sparse, with only the blocks Qn;k,k′

corresponding to spatially close sensors k and k′ being significantly
nonzero. In fact, if Qn;k,k′ = 0 for two sensors k and k′, the corre-
sponding noise vectors vn,k and vn,k′ are conditionally independent
given all the other noise vectors in the network [11]. For a given sen-
sor k, we define the neighbor set Nk as the set of all sensors k′ 6= k
such that Qn;k,k′ 6= 0. We assume that sensor k is able to commu-
nicate with all sensors k′∈ Nk; this is consistent with the fact that,
typically, these sensors are spatially close to sensor k. Furthermore,
we assume that sensor k knows Qn;k,k′ for all k′∈Nk.

3. DISTRIBUTED PARTICLE FILTERING

We propose two DPF algorithms in which each sensor tracks a par-
ticle representation of the global posterior f(xn|z1:n) using a local
PF. At each time n, the local PF at sensor k calculates a state esti-
mate x̂n,k that is based on z1:n, i.e., the measurements of all sensors
up to time n. This requires the GLF f(zn|xn) (or, equivalently,
Sn(zn,xn)) in the weight calculation step of the local PFs. Since
each sensor initially knows only its own local likelihood function
f(zn,k|xn) and its local measurement zn,k, a distributed method to
obtain Sn(zn,xn) at each sensor is needed. While the two proposed
DPFs are based on the same generic DPF algorithm, which is stated
below, they differ in the distributed computation of Sn(zn,xn).

GENERIC DPF ALGORITHM

The local PF at sensor k is initialized at time n=0 with J particles

x
(j)
0,k, j∈{1, . . . , J} randomly drawn from the prior pdf f(x0). The

weights are initially equal, i.e., w
(j)
0,k=1/J for all j.

At time n ≥ 1, the local PF at sensor k performs the following
steps, which are identical for all k.

1. For each previous particle x
(j)
n−1,k , a new particle x

(j)
n,k is

drawn from f(xn|x
(j)
n−1,k) ≡ f(xn|xn−1)

∣

∣

xn−1=x
(j)
n−1,k

.

2. Nonnormalized weights associated with the particles x
(j)
n,k are

calculated according to

w̃
(j)
n,k = exp

(

−
1

2
Sn(zn,x

(j)
n,k)

)

, j ∈ {1, . . . , J} . (8)

Two alternative methods for a distributed computation of

Sn(zn,x
(j)
n,k) will be discussed in Sections 4.2 and 4.3.

3. The weights w̃
(j)
n,k are normalized as

w
(j)
n,k =

w̃
(j)
n,k

∑J

j′=1 w̃
(j′)
n,k

, j ∈ {1, . . . , J} .

The set
{(

x
(j)
n,k , w

(j)
n,k

)}J

j=1
provides a particle representa-

tion of the current global posterior f(xn|z1:n).

4. From the particle representation
{(

x
(j)
n,k , w

(j)
n,k

)}J

j=1
, an ap-

proximation of the global MMSE state estimate (7) is com-

puted according to x̂n,k =
∑J

j=1w
(j)
n,kx

(j)
n,k .

5. The set
{(

x
(j)
n,k, w

(j)
n,k

)}J

j=1
can be resampled if necessary

(see, e.g., [9] for indications when resampling should be per-

formed). This produces J resampled particles x
(j)
n,k. The

weights are then redefined to be identical, i.e., w
(j)
n,k = 1/J .

We note that in this algorithm, each sensor performs almost
the same operations as the fusion center in a centralized PF. The
only difference is Step 2, in which a distributed computation of

Sn(zn,x
(j)
n,k) is performed. This is also the only step of the DPF

algorithm that requires communications with neighboring sensors.

4. DISTRIBUTED CALCULATION OF Sn(zn,x
(j)
n,k)

We now present two alternative methods for the distributed compu-

tation of Sn(zn,x
(j)
n,k), which is required in (8).

4.1. Uncorrelated Measurement Noises

First, we briefly review the case of mutually uncorrelated measure-
ment noises vn,k. Here, the precision matrix Qn is block-diagonal,
and hence (6) simplifies as

Sn(zn,xn) =
K
∑

k=1

[zn,k−hn,k(xn)]
⊤
Qn;k,k [zn,k−hn,k(xn)] .

(9)

As proposed in [3, 4], each sensor k can calculate Sn(zn,x
(j)
n,k)

based on (9) by first calculating [zn,k−hn,k(x
(j)
n,k)]

⊤Qn;k,k [zn,k−

hn,k(x
(j)
n,k)] for each particle x

(j)
n,k, j ∈ {1, . . . , J} (this can be

done locally) and then using an average consensus algorithm [14,
15] to compute the sum over all sensors in (9) (this requires com-
munications with neighboring sensors). One consensus is executed
for each particle, i.e., for each j ∈ {1, . . . , J}. This method re-

quires identical particle sets
{

x
(j)
n,k

}J

j=1
at each sensor, which can

be achieved by (i) using random number generators that are syn-
chronized across all sensors and (ii) executing an additional max-
consensus algorithm [15] for each particle (see Section 4.2 for de-
tails). The communication requirements tend to be high because
two consensus algorithms—one average consensus and one max-
consensus—are needed for each particle and the number of particles
J may be as high as several thousands.

An alternative method is provided by the likelihood consensus,
which relies on the following approximate (finite-order) basis ex-
pansion of Sn(zn,xn) [5, 16]:

Sn(zn,xn) ≈
R
∑

r=1

an,r(zn)ψn,r(xn) . (10)

Here, the an,r(zn) are expansion coefficients and the ψn,r(xn) are
basis functions that are known to all sensors. For a block-diagonal
precision matrix Qn, the coefficients an,r(zn) can be calculated in
a distributed way using R instances of an average consensus algo-
rithm (see [5, 16] for details). Each sensor can then locally calculate

an approximation of Sn(zn,x
(j)
n,k) for all j ∈ {1, . . . , J}. Since the

number of expansion coefficients R is typically much lower than the
number of particles, significant savings in communications can be

6270

achieved compared to the first method. Furthermore, this method
does not require synchronized random number generators. On the

other hand, only an approximation of Sn(zn,x
(j)
n,k) is obtained,

which may lead to a certain performance loss.

4.2. Method 1: Direct Per-Particle Evaluation

We now consider the case of mutually correlated measurement
noises vn,k. Here, Sn(zn,xn) is given by the double sum expres-
sion (6). To extend the first consensus-based method of Section 4.1
to the correlated case, we rewrite (6) as

Sn(zn,xn)

=
K
∑

k=1

[zn,k−hn,k(xn)]
⊤

∑

k′∈Ñk

Qn;k,k′[zn,k′−hn,k′(xn)] , (11)

with Ñk , Nk ∪{k} (here, Nk was defined in Section 2). Note that
this expression involves only the nonzero blocks Qn;k,k′.

The calculation now works as follows. First, the measure-
ments zn,k′ and suitable descriptions of the measurement functions
hn,k′(·) of all neighbors k′∈ Nk are transmitted to sensor k. Thus,
sensor k is now able to locally calculate

sn,k

(

{zn,k′}k′∈Ñk
,x

(j)
n,k

)

, [zn,k−hn,k(x
(j)
n,k)]

⊤
∑

k′∈Ñk

Qn;k,k′[zn,k′−hn,k′(x
(j)
n,k)] ,

for j∈{1, . . . , J}. From (11),

Sn(zn,x
(j)
n,k) =

K
∑

k=1

sn,k

(

{zn,k′}k′∈Ñk
,x

(j)
n,k

)

, j∈{1, . . . , J} .

(12)
These J sums over all sensors k can be computed by executing J
instances of an average consensus algorithm.

This method presupposes that identical sets of particles
{

x
(j)
n,k

}J

j=1

are sampled at each sensor. This, in turn, requires that the local
random number generators at all sensors are synchronized—such
that the same pseudo-random numbers are obtained in the entire

network—and that identical particle representations
{(

x
(j)
n−1,k ,

w
(j)
n−1,k

)}J

j=1
of the previous global posterior f(xn−1|z1:n−1) are

available at each sensor. However, the Sn(zn,x
(j)
n,k) and conse-

quently the weights w̃
(j)
n,k (see (8)) obtained at different sensors will

differ slightly since only a finite number of consensus iterations can
be performed. As proposed in [3, 4] for the uncorrelated case, iden-
tical weights can be obtained by using max-consensus algorithms to
produce at each sensor the maximum of the weights of all sensors.
One max-consensus has to be executed for each j∈{1, . . . , J}.

The communication requirements of this method at any given
time n are as follows. Prior to executing the consensus algorithms,
each sensor k broadcasts to its neighbors M0 = Nn,k + Hn,k real
numbers. Here, Nn,k is the dimension of zn,k and Hn,k is the
count of real numbers describing hn,k(·). While executing the con-
sensus algorithms, each sensor broadcasts to its neighbors Mc =
J(Ia + Im) real numbers. Here, J is the number of particles and Ia
and Im denote the number of iterations of the average consensus and
of the max-consensus, respectively. Since the number of particles J
can be large, the communication requirements can be very high; they
can, however, be reduced by using proposal adaptation to decrease
J [4] or by computing only the largest weights [3].

4.3. Method 2: Basis Expansion Approximation

Motivated by the high communication requirements of the method
presented above, we now extend the second consensus-based method

of Section 4.1 to the correlated case. We approximate the function

bn,k(xn; zn,k) , zn,k − hn,k(xn) occurring in (11) by a finite-
order basis expansion, i.e.,

bn,k(xn; zn,k) ≈
R
∑

r=1

αn,k,r(zn,k)ϕn,r(xn) . (13)

Here, the αn,k,r(zn,k) are expansion coefficients that contain all the
sensor-local information (including the sensor measurement zn,k)
and the ϕn,r(xn) are fixed, sensor-independent basis functions that
are known to all sensors. At each time n, the expansion coeffi-
cients αn,k,r(zn,k) in (13) are calculated locally at each sensor k
by means of least squares fitting [17] based on the J data points
{(

x
(j)
n,k ,bn,k(x

(j)
n,k; zn,k)

)}J

j=1
. Here, the use of the particles x

(j)
n,k

drawn in Step 1 of the generic DPF algorithm ensures a good ap-
proximation in those regions of the state space where Sn(zn,xn) is
evaluated in Step 2 (see (8)). Substituting (13) into (11) and chang-
ing the order of summation, we obtain the following basis expansion
approximation of Sn(zn,xn):

Sn(zn,xn) ≈ S̃n(zn,xn)

,

R
∑

r1=1

R
∑

r2=1

an,r1,r2(zn)ϕn,r1(xn)ϕn,r2(xn) , (14)

where

an,r1,r2(zn) =

K
∑

k=1

α
⊤
n,k,r1

(zn,k)
∑

k′∈Ñk

Qn;k,k′αn,k′,r2(zn,k′) .

(15)

We note that, using any one-to-one index mapping (r1, r2)→ r, the

approximation S̃n(zn,xn) in (14) can also be written in the form

(10), i.e., S̃n(zn,xn) =
∑R′

r=1 a
′
n,r(zn)ψn,r(xn), with R′ = R2,

a′n,r(zn) = an,r1,r2(zn), and ψn,r(xn) = ϕn,r1(xn)ϕn,r2(xn).

The overall calculation works as follows. First, the coefficients
{

αn,k′,r(zn,k′)
}R

r=1
of all neighbors k′ ∈ Nk are transmitted to

sensor k, which locally calculates α⊤
n,k,r1

(zn,k)
∑

k′∈Ñk
Qn;k,k′

×αn,k′,r2(zn,k′) for (r1, r2) ∈ {1, . . . , R}2. Then, the sum
over all sensors k in (15) is computed using average consensus
algorithms. Thereby, each sensor obtains approximations of the
coefficients an,r1,r2(zn). Note that one consensus algorithm is

needed for each (r1, r2) ∈ {1, . . . , R}2. Finally, using the approx-
imate an,r1,r2(zn), each sensor is able to approximately evaluate

S̃n(zn,xn) for any value of xn, including the particles x
(j)
n,k as

required in Step 2 of the generic DPF algorithm.
The communication requirements of this method at any given

timen are as follows. To transmit the coefficients
{

αn,k,r(zn,k)
}R

r=1
to all neighbors, sensor k needs to broadcast M0=RNn,k real num-
bers. Furthermore, the consensus algorithms computing the sum
over all k in (15) require each sensor to broadcast to its neighbors
Mc = IaR

2 real numbers, where Ia is the number of consensus
iterations. Typically, these communication requirements are sig-
nificantly lower than those of the method presented in Section 4.2.
Furthermore, since the local PFs at the various sensors operate inde-
pendently (only Sn(zn,xn) is computed in a distributed manner),
the local random number generators need not be synchronized. On
the other hand, the basis expansion approximation may result in a
certain performance loss.

5. SIMULATION RESULTS

We consider a target tracking application in which the state vector

xn = (xn yn ẋn ẏn)
⊤ represents the 2D position and velocity of a

6271

CPF

DPF-1-U
DPF-1

n

R
M

S
E
n

0 50 100 150 200

0.2

0.6

1.0

1.4

1.8

Fig. 1. RMSEn versus time n for DPF-1,
DPF-1-U, and CPF.

CPF

DPF-2-U

DPF-2

n

R
M

S
E
n

0 50 100 150 200

0.2

0.6

1.0

1.4

1.8

Fig. 2. RMSEn versus time n for DPF-2,
DPF-2-U, and CPF.

DPF-2-U
DPF-2-U (exact sum calc.)

DPF-2
DPF-2 (exact sum calc.)

DPF-1-U
DPF-1-U (exact sum calc.)

DPF-1
DPF-1 (exact sum calc.)

Ia

A
R

M
S

E

4 6 8 10 12 14 16

0.2

0.6

1.0

1.4

1.8

Fig. 3. ARMSE versus the number of itera-
tions of average consensus.

single target in the x-y plane. The state vector evolves according to
xn = Gxn−1+Wun, n = 1, 2, . . . , where the matrices G∈R

4×4

and W ∈ R
4×2 are chosen as in [1] and the driving noise vectors

un ∈ R
2 are independent and identically distributed according to

N (02, σ
2
uI2) with σ2

u = 0.00035. The target emits an acoustic or
radio signal with a known, constant transmit power A=10.

The network consists ofK=25 sensors, which are deployed on a
jittered grid within a square region of size da×da with da=40. Each
sensor communicates with other sensors within a range of dc =15 .
The (scalar) measurement of sensor k is given by (cf. (2))

zn,k =
A

‖ρ(xn)− ξk‖2
+ vn,k ,

where ξk is the position of sensor k and ρ(xn) , (xn yn)
⊤ is

the target position. The measurement noise vn,k is assumed to
be zero-mean Gaussian, independent for different n, and corre-
lated across the sensors k. The entries of the (time-independent)
precision matrix Q of the all-sensors measurement noise vector

vn = (vn,1 · · · vn,25)
⊤ are chosen as [12]

Qk,k′ =

q > 0 , k=k′

−c(da−rk,k′)
√

Qk,kQk′,k′ , k 6=k′, rk,k′ ≤ dc

0 , k 6=k′, rk,k′ >dc ,

where rk,k′ , ‖ξk − ξk′‖. We set q = 1000 and c = 0.00615;
this ensures sufficient correlation while the precision matrix remains
positive definite [12]. Note that since the vn,k are now scalars, the
blocks Qn;k,k′ in (6) reduce to the scalar entries Qk,k′ .

We simulated two DPFs, briefly referred to as DPF-1 and DPF-2,
that use the generic DPF algorithm of Section 3. For the distributed

calculation of Sn(zn,x
(j)
n,k) in Step 2 of that algorithm, DPF-1 uses

Method 1 in Section 4.2 and DPF-2 uses Method 2 in Section 4.3.
We also simulated a centralized PF (CPF) that processes all sensor
measurements at a fusion center. Finally, we simulated two standard
consensus-based DPFs, referred to as DPF-1-U and DPF-2-U, that
use the generic DPF algorithm of Section 3 based on the (incorrect)
assumption of uncorrelated measurement noises, i.e., disregarding
the nonzero off-diagonal entries of Q. For the distributed calcula-

tion of Sn(zn,x
(j)
n,k), DPF-1-U and DPF-2-U use, respectively, the

first [3,4] and second method [5] reviewed in Section 4.1. For DPF-2
and DPF-2-U, we approximate b(xn; zn,k) by a multivariate poly-
nomial of degree Rp = 2, which corresponds to a basis expansion
order R=6. The basis expansion of Sn(zn,xn) in (14) is thus ob-
tained as a polynomial of degree 2Rp=4. For all DPFs, the relevant
sums over all sensors k (e.g., in (12) for DPF-1 and in (15) for DPF-
2) are computed by an average consensus algorithm with Metropolis

weights [18], using Ia=10 consensus iterations unless stated other-
wise. The number of particles at each sensor (for the DPFs) and at
the fusion center (for the CPF) is J=5000.

As a performance measure, we use the root-mean-square error of
the estimated ρ(xn), denoted RMSEn, which is computed as the
square root of the average of the squared estimation error over all
sensors and over 1000 simulation runs. We also compute the average
RMSE (ARMSE) by averaging RMSE2

n over all 200 simulated time
instants n and taking the square root of the result.

Figures 1 and 2 show the evolution of RMSEn. It can be seen that
both DPF-1 and DPF-2 perform almost as well as the CPF and sig-
nificantly outperform DPF-1-U and DPF-2-U. Furthermore, DPF-1
performs slightly better than DPF-2. However, this comes at the cost
of substantially higher communication requirements: in the case of
DPF-1, during one time step, each sensor transmits 50003 real num-
bers, compared to only 156 in the case of DPF-2. The communi-
cation requirements of DPF-1-U and DPF-2-U are 50000 and 150,
respectively, and thus only slightly lower.

Figure 3 shows the ARMSE versus the number of iterations used
by the average consensus algorithms, Ia. As a benchmark, we also
consider hypothetical DPFs in which the approximate sum calcula-
tions performed by the consensus algorithms are replaced by direct,
exact sum calculations; this corresponds to an infinite number of
consensus iterations. As expected, the ARMSE of DPF-1, DPF-2,
DPF-1-U, and DPF-2-U decreases with growing Ia and approaches
the ARMSE of the respective hypothetical DPF. Note, however, that
the communication requirements increase with growing Ia. Further-
more, we see that DPF-1 and DPF-1-U require fewer iterations than
DPF-2 and DPF-2-U to achieve an ARMSE that is close to that of the
respective hypothetical DPFs. Due to the approximation involved in
DPF-2 and DPF-2-U, these methods are more sensitive to variations
across the sensors of the quantities calculated by the consensus al-
gorithms. Hence, they require more consensus iterations to achieve
good performance. Nevertheless, the communication requirements
of DPF-2 and DPF-2-U are still significantly smaller than those of
DPF-1 and DPF-1-U.

6. CONCLUSION

We extended two existing consensus-based distributed particle filter
algorithms to the case of mutually correlated sensor noises. In both
algorithms, the state estimates computed by the local particle filters
at the various sensors take into account the past and present measure-
ments of all sensors. This is enabled by two alternative methods for a
distributed approximate calculation of the global likelihood function.
Simulation results for a target tracking problem demonstrated the
good performance of both proposed algorithms, with one algorithm
slightly outperforming the other at the cost of significantly higher
communications requirements.

6272

7. REFERENCES

[1] O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Distributed particle filtering
in agent networks: A survey, classification, and comparison,” IEEE
Signal Process. Mag., vol. 30, pp. 61–81, Jan. 2013.

[2] B. N. Oreshkin and M. J. Coates, “Asynchronous distributed parti-
cle filter via decentralized evaluation of Gaussian products,” in Proc.
FUSION-10, Edinburgh, UK, Jul. 2010.

[3] D. Üstebay, M. Coates, and M. Rabbat, “Distributed auxiliary particle
filters using selective gossip,” in Proc. IEEE ICASSP-11, Prague, Czech
Republic, pp. 3296–3299, May 2011.

[4] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis, “Set-
membership constrained particle filter: Distributed adaptation for sen-
sor networks,” IEEE Trans. Signal Process., vol. 59, pp. 4122–4138,
Sep. 2011.

[5] O. Hlinka, O. Slučiak, F. Hlawatsch, P. M. Djurić, and M. Rupp, “Like-
lihood consensus and its application to distributed particle filtering,”
IEEE Trans. Signal Process., vol. 60, pp. 4334–4349, Aug. 2012.

[6] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ: Prentice-Hall, 1993.

[7] H. Tanizaki, Nonlinear Filters: Estimation and Applications. Berlin,
Germany: Springer, 1996.

[8] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. New York, NY: Springer, 2001.

[9] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian track-
ing,” IEEE Trans. Signal Process., vol. 50, pp. 174–188, Feb. 2002.

[10] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Miguez, “Particle filtering,” IEEE Signal Process. Mag.,
vol. 20, pp. 19–38, Sep. 2003.

[11] H. Rue and L. Held, Gaussian Markov Random Fields: Theory and
Applications. Boca Raton, FL: Chapman & Hall/CRC, 2005.

[12] R. G. Baraniuk, V. Delouille, and R. Neelamani, “Robust distributed es-
timation using the embedded subgraphs algorithm,” IEEE Trans. Signal
Process., vol. 54, pp. 2998–3010, Aug. 2006.

[13] Y. Sung, H. V. Poor, and H. Yu, “How much information can one get
from a wireless ad hoc sensor network over a correlated random field?,”
IEEE Trans. Signal Process., vol. 55, pp. 2827–2847, Jun. 2009.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooper-
ation in networked multi-agent systems,” Proc. IEEE, vol. 95, pp. 215–
233, Jan. 2007.

[15] A. Tahbaz-Salehi and A. Jadbabaie, “A one-parameter family of dis-
tributed consensus algorithms with boundary: from shortest paths to
mean hitting times,” in Proc. IEEE CDC-06, San Diego, CA, pp. 4664–
4669, Dec. 2006.

[16] O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Likelihood consensus-
based distributed particle filtering with distributed proposal density
adaptation,” in Proc. IEEE ICASSP-12, Kyoto, Japan, pp. 3869–3872,
Mar. 2012.

[17] Å. Björck, Numerical Methods for Least Squares Problems. Philadel-
phia, PA: SIAM, 1996.

[18] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sen-
sor fusion based on average consensus,” in Proc. IEEE IPSN-05, Los
Angeles, CA, pp. 63–70, Apr. 2005.

6273

