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ABSTRACT

The adaptive cosine estimator is a popular and effective al-
gorithm for detecting materials in hyperspectral images. To
predict the performance of this algorithm in real hyperspec-
tral scenes, a statistical model using a mixture of multivariate
t-distributions for the background and a Gaussian distribution
for the target is utilized. In this paper, two methods for finding
the response of the adaptive cosine estimator (ACE) and Beta-
detector when applied to a statistical model. To verify that the
proposed techniques work as expected, t-distribution and F-
distribution quantiles are computed and compared to standard
values. Finally, a preliminary validation with Monte Carlo
simulation based on real hyperspectral data is presented. We
build on previous work for the matched filter and extends it to
use two more detectors.

Index Terms— Hyperspectral imaging, detection algo-
rithms, signal detection, matched filters

1. INTRODUCTION

The detection of materials in hyperspectral imagery (HSI) is
a useful, but challenging area of research; the large amount
of data that must be analyzed, necessitates the use of auto-
mated detection algorithms [1]; while a variety of detection
algorithms are available, the absolute performance of these
algorithms is less well understood. The end goal is to be able
to predict how well a hyperspectral detection system will per-
form when searching for a material in a scene.

To this end, the performance prediction model herein con-
sists of a statistical characterization of the background, as dis-
cussed in [2] and [3], and a linear mixture for the target as in
[4]. In this setup, the background of the scene is statistically
described using multiple elliptical t-distributions, while the
target is modeled by a single Gaussian distribution. As shown
in Fig. 1 and following [5], a performance estimate is obtained
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by propagating the background and target statistics through a
detector to find the cumulative distribution function (CDF) of
the output; the corresponding probability of false alarm (PFA)
and probability of detection (PD) for any threshold determine
the expected performance.

In [5] the performance of the matched filter (MF) is con-
sidered in the same context, while here techniques for propa-
gating the background and target statistics through the adap-
tive cosine estimator (ACE) and beta-detector are presented.
Throughout, we will use the term beta-detector to refer to the
squared version of ACE, but both are referred to as ACE in
the literature. The ACE and beta-detector are two well known
and widely used detectors, but because they are non-linear de-
tectors, they are often difficult to statistically characterize. As
discussed more thoroughly at the end of Section 2 the model
we use does not result in a simple solution.

Fig. 1. Illustration of prediction model with background and
target.

Although the model is multi-modal, each background
cluster passes through the detector independent of the others.
Therefore, to use ACE or any other detector in place of the
MF, only a single class needs to be examined at a time. Thus,
we can consider a single component at the input as shown in
Fig. 2 and summarized as: given some input x with proba-
bility density function (PDF) f(x) and a detector y = D(x),
find the distribution of the output f(y). In this paper, D(x)
is either the ACE or beta-detector and x is an elliptically
distributed vector.

The rest of the paper is structured as follows: in Section 2
the statistical model for the input and the MF, ACE and Beta-
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Fig. 2. Operation of detector with unimodal distribution at the
input.

detectors are introduced; in Section 3 a technique for finding
the CDF of ACE is proposed; in Section 4 a similar technique
for finding the CDF of the Beta-detector is proposed; in Sec-
tion 6 our techniques are compared to standard F-distribution
and t-distribution CDFs and a preliminary validation with real
data is conducted. In Section 7 we give a short summary.

2. BACKGROUND

Restricting our attention to Gaussian input. The input to the
target detection system may be defined by a p-dimensional
column vector x0. The target signature is also a p-dimensional
vector denoted s0. Assume that the background mean vector
mb and positive definite background covariance matrix Cb

are known (non-random), and are used to design the detector;
then let the input x0 be

x0 ∼ N (m0,C)

where m0 and C are the mean vector and covariance matrix
of the input. Prior to detection, the input data and target sig-
nature are mean-subtracted, yielding

x = x0 −mb and s = s0 −mb.

Thus, x ∼ N (m,C) where m = m0 −mb. Then, defining
the whitened vectors

x̃ = C
−1/2
b x and s̃ = C

−1/2
b s

the detectors of interest – the Matched Filter (MF), the Adap-
tive Cosine Estimator (ACE), and the Beta-detector – are de-
fined as

yMF =
x̃Ts̃√
s̃Ts̃

(1)

yACE =
x̃Ts̃√

s̃Ts̃
√
x̃Tx̃

(2)

yβ =
(x̃Ts̃)2

(s̃Ts̃)(x̃Tx̃)
(3)

These versions of yACE and yβ are commonly used in practice,
but are not convenient for statistical results; instead, introduc-
ing the projection matrices

Ps̃ = s̃(s̃Ts̃)−1s̃T (4)

P⊥s̃ = I−Ps̃

two statistics equivalent to Eq. 2 and Eq. 3 are the “cotan-
gent” and F-detector:

ycot =
yACE√
1− y2ACE

=
s̃TPs̃x̃

√
s̃Ts̃
√
x̃TP⊥s̃ x̃

(5)

yF =
yβ

1− yβ
=

(x̃Ts̃)2

(s̃Ts̃)(x̃TP⊥s̃ x̃)
(6)

Both of these statistics are ratios of orthogonal components
and throughout the rest of this paper, these versions will be
used instead of Eq. 2 and Eq. 3.

To predict the performance of these algorithms, the dis-
tribution of the output needs to be found. Finding the distri-
bution, or equivalently the CDF, of the output is required to
find the PD and PFA, which are used to measure performance.
The distribution of the ACE and Beta-detector have been well
studied in [6] and [7], but the statistical results are derived
using two critical assumptions about the input:

m = as and C = σ2Cb

where a and σ2 are scalars. The importance of these assump-
tions is made clear by examining the distribution of x̃. In
general, the input to the detectors becomes

x̃ ∼ N
(
m̃, C̃

)
(7)

where

m̃ = C
−1/2
b (m0 −mb) and (8)

C̃ = C
−1/2
b CC

−1/2
b (9)

The first assumption constrains the mean of the input to be
in the direction of s̃; the second assumption constrains the
covariance matrix of the input to be a scalar multiple of the
background covariance, and yields uncorrelated components
of equal variance: C̃ = σ2I. In the performance prediction
model we adopt [5], neither of these constraints is enforced;
therefore, in this paper, a set of alternative techniques is pro-
posed.

3. THE DISTRIBUTION OF ACE

In general we wish to find a general expression for the CDF
of ycot for as outlined in Fig. 3. From Eq. 5, an equivalent

Fig. 3. Illustration of steps in computing CDF of the Beta-
detector.
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way to finding the CDF of yACE is

Pr {ycot ≤ ηcot} = Pr
{

ycos√
1− ycos

≤ ηcot
}

(10)

where ηcot is the threshold for the detector. Using the defini-
tion of the MF in Eq. 1, and defining

q = x̃TP⊥s̃ x̃ (11)

the cotangent in Eq. 5 can be written as

ycot =
yMF√
q

(12)

Substituting into Eq. 10 and rearranging, yields

Pr {ycot ≤ ηcot} = Pr {yMF ≤ ηcot
√
q} (13)

Conditioning on q, the CDF of ycot becomes

Pr {ycot ≤ ηcot} =
∫ ∞
0

Pr {yMF ≤ η
√
q|q} fq(q)dq (14)

where Pr
{
yMF ≤ η

√
q|q
}

is the CDF of the MF given q. Two
functions remain unknown: the marginal probability density
function (PDF) of q fq(.) and Pr

{
yMF ≤ η

√
q|q
}

. See Sec-
tion 3.1 for the former and Section 3.2 for the latter.

3.1. The Probability Density Function of q

The PDF of the quadratic form q in Eq. 11 is not readily
accessible in closed form, but the characteristic function is
[8]. Denoting the characteristic function of q as φq(t), the
PDF of q is obtained via an inverse Fourier transform

fq(q) = F−1
{
φq(t)

}
(15)

where φq(.) is the complex conjugate of the characteristic
function [9]. The variable q is a sum of squares of the com-
ponents of x̃, which can be represented as a sum of indepen-
dent chi-squared variables [10]. To calculate the characteristic
function φq(t) of q, the non-centrality parameters δi and scal-
ing parameters λi (i = 1, . . . , p) of the constituent variables
can be found through the technique in [8].

3.2. The Conditional Distribution of the MF

To find the CDF of the MF given q there are two cases to
consider:

1. the MF and q are uncorrelated and independent, and

2. the MF and q are correlated.

In the former case, the conditional distribution of the MF
is the marginal distribution; it is well known that the MF is
Gaussian distributed when the input x is Gaussian distributed
[5]; thus Pr

{
yMF ≤ η

√
q|q
}

is the CDF of a Gaussian random
variable; when the MF and q are nearly uncorrelated, this is a
reasonable approximation. In future work, the latter case will
be addressed more thoroughly.

4. THE DISTRIBUTION OF THE BETA-DETECTOR

In this section, an expression for the CDF of the Beta-detector
is sought. The processing chain used is shown in Fig. 4 Recall

Fig. 4. Illustration of steps in computing CDF of the Beta-
detector.

that for statistical analysis it is preferable to use yF of Eq. 6
instead of Eq. 3. However, the two detectors are equivalent
since

Pr {yF ≤ ηF } = Pr
{

yβ
1− yβ

≤ ηF
}

(16)

From Eq. 6 and the projection matrix of Eq. 4, the F-detector
can be written conveniently in terms of projection matrices as

yF =
(x̃Ts̃)2

(s̃Ts̃)(x̃TP⊥s̃ x̃)
=

x̃TPs̃x̃

x̃TP⊥s̃ x̃
.

Following the work in [11] this allows the CDF of yF in Eq.
16 to be rewritten as

Pr {yF ≤ ηF } = Pr
{
x̃T(Ps̃ − ηFP⊥s̃ )x̃ ≤ 0

}
(17)

= Pr
{
x̃TB(ηF )x̃ ≤ 0

}
. (18)

where B(η) = Ps̃−ηFP⊥s̃ ; this expression is now in terms of
a single quadratic form that is a function of threshold ηF . The
CDF of this quadratic form is generally unavailable in closed
form, but, as with q in Eq. 11, its characteristic function can
be found using the technique in [8], and inverted to find its
CDF.

5. HANDLING HEAVY-TAILED INPUT

Up to this point the input to the detector has been Gaussian
distributed, but the background model used in [5] uses the
heavy-tailed multivariate t-distribution (MVT). Letting

x
d
= m+ z(s/ν)−1/2 (19)

where s ∼ χ2
ν and z ∼ N (0,C) then x follows a MVT

distribution with mean m, shape matrix C and ν degrees of
freedom [12].

Consider the case where m = 0; substituting Eq. 19 into
Eq. 2 or Eq. 5, the scaling (s/ν) cancels. This property
makes the ACE and Beta-detector insensitive to ν in some
cases, and less sensitive to ν when the mean m is small [7].
Therefore, in many cases, assuming Gaussian input is a good
approximation for these detectors, and the results derived pre-
viously are applicable.
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In situations where an exact result is desired, conditional
probability can be employed; by conditioning on s it is appar-
ent from Eq. 19 that x ∼ N

(
m,C(s/ν)−1

)
, which means

that by conditioning on s the results for Gaussian inputs can
be applied. The total CDF of a detector in this case is

F (y) =

∫ ∞
0

F (y|s)f(s)ds

where F (y|s) is the CDF of the detector given a value of s.
This adds a level of complexity to the Gaussian results, but is
unnecessary in many cases, especially when m is negligibly
small.

6. RESULTS

In this section, we verify that the algorithms outlined in Fig. 4
and Fig. 3 produce the expected output. Experiments were
conducted using Eq. 5 and Eq. 6. Here we enforce the con-
straints mentioned earlier: m = as and C = Cb. For this
experiment the number of dimensions p = 140 and C =
I. Then, the variables

√
p− 1ycot ∼ tp−1(δ) and pyF ∼

F1,p(δ
2) follow non-central t and F-distributions respectively.

The non-centrality parameter is δ =
√
mTC−1s. In Fig. 5

and Fig. 6 the MATLAB implementation of the noncentral-F
and noncentral-t exceedances are shown (exceedance = 1−
CDF). As shown, there is good agreement between the two
techniques to about 10−8.

Fig. 5. Noncentral F-distribution exceedance plots with δ =
0, 2, 4, 8 (left to right).

6.1. Algorithm Verification with Monte Carlo Simulation

In this experiment, a hyperspectral background model was
created using real hyperspectral data, and the linear mixing
model was used to simulate a target of various fill fractions.
For verification 105 pixels were generated from both the back-
ground and that target, and fill fractions of 3.0%, 5.0%, 6.5%
and 8.5% were selected for the target. The results of these
simulations for the Beta-detector are shown in Fig. 7. While

Fig. 6. Noncentral t-distribution exceedance plots with δ =
0, 2, 4, 8 (left to right).

there is good agreement between the Monte Carlo estimated
Receiver Operating Characteristic (ROC) curve and the pre-
dicted ROC curve [13]. Near a PFA of 10−5 there is more
variability in the estimate because there are few samples in
this region.

Fig. 7.

7. CONCLUSION

In this paper we have presented techniques for computing
the CDF of two detection algorithms. These techniques do
not rely on Monte Carlo simulation and fit well with pre-
vious work on performance prediction that was related to
the matched filter. Finally, we demonstrated that this tech-
nique can be used to compute t-distribution quantiles and
F-distribution quantiles. In the future we hope to discuss
implementation details and to test the output of such a model
against real data.
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