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ABSTRACT

This paper proposes a novel non-parametric estimator for
spectroscopic echo-train signals, termed ETCAPA, to be used
as a robust and reliable first-approach-technique for new,
unknown, or partly disturbed substances. Exploiting the
complete echo structure for the signal of interest, the method
reliably estimates all parameters of interest, enabling initial
estimates for the identification procedure to follow. Extend-
ing the recent dCapon and dAPES algorithms, ETCAPA
exploits a data-dependent filter-bank formulation together
with a non-linear minimization to give a hitherto unobtained
non-parametric estimate of the echo train decay. The pro-
posed estimator is evaluated on both simulated and measured
NQR signals, clearly showing the excellent performance of
the method, even in the case of strong interferences.

Index Terms— Nuclear Quadrupole Resonance, echo-
train signals, radio-frequency spectroscopy, non-parametric
estimation, filter-bank methods.

1. INTRODUCTION

Nuclear quadrupole resonance (NQR) is a solid-state radio
frequency (RF) technique that may be used to identify sub-
stances containing quadrupolar nuclei, such as found in many
forms of explosives, narcotics, and medicines (see e.g., [1,2]).
Measurements are commonly formed using so-called pulse
lock sequences (PSL), wherein a train of RF pulses are trans-
mitted at or close to the expected excitation frequency (or
the dominant such frequency), generating a decaying echo
train [3]. Figure 1 illustrates the envelope of the resulting
echo-train (ET) data as obtained using a pulse spacing of τ .
Typical analysis and detection algorithms for ET data requires
some initial estimates of the expected echo decay within each
echo, here denoted β, as well as the overall echo train de-
cay, dentoted η, capturing the decay over the various echoes
[3, 4]. Such estimates are typically obtained using parame-
teric estimators, such as the ET-ESPRIT and ETAML [3,5], or
non-parametric data-adaptive estimators, such as the dCapon,
dAPES, or dIAA algorithms [6, 7]. The former kind of esti-
mators suffer from requiring a priori knowledge of the precise
data structure and model orders, including the presence of any
possible interference components, which are commonly oc-

Fig. 1. The PSL sequence and corresponding NQR echo train
signal. The β is here visual being the exponential decay in
every echo and η as the decay between echoes.

curing in all forms of NQR measurements (see e.g., [4]). The
mentioned non-parametric estimators on the other hand are
robust to such assumptions, allowing for a spectral estimate
enabling the separation of the NQR signal and the interfer-
ence signals, but are then not able to estimate the finer struc-
ture of the ET, but rather just an overall exponential decay.
In this paper, we extend on the methods in [6, 7], presenting
a non-parametric data-dependent estimator of both the β and
η decays of each relevant spectral line. In order to reduce
the computational complexity of the method, the introduced
ETCAPA estimator is formed in two steps, such that an initial
estimate of the relevant frequencies using a simple exponen-
tial decay is formed by a combination of dCapon and dAPES,
from which the (β, η) decays are then found for any frequency
component of interest. The proposed method is evaluated on
both simulated and measured data of the common high explo-
sive TNT, as well as the narcotic methamphetamine.

2. DATA MODEL

As shown in [3], the m:th echo of the NQR signal resulting
from a PSL sequence may be well modeled as

y(t,m) =

K∑
k=1

αkλ
t
kρ
m
k + w(t,m), t = 0 . . . N − 1,

λk = e−βk−ηk+iωk ,

ρk = e−2τηk

(1)
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for echo m = 0, . . . ,M − 1, where τ is half the distance
between two consecutive echoes, K is the number of spec-
tral lines, ωk denotes the k:th spectral line, βk and ηk are
the damping within each echo and the echo train damping,
respectively, for spectral line k, and with w(t,m) denoting
an additive noise that is well modeled as being Gaussian dis-
tributed. To simplify notation, we have here, without loss of
generality, treated the signal components formed from time τ
in each echo, i.e., only considering the decaying part of each
echo; the exploding part may be treated similarly, if present
(this depends on the substance). The additive noise may typi-
cally be modeled using a low-order autoregressive model, re-
flecting the spectral shaping of the spectrometer [8]. Often,
a number of strong but narrowband spurious peaks and in-
terference components are also present due to poor or inade-
quate shielding of the examined sample, the equipment, or its
wiring. In this work, we focus on non-parametric estimation
of the β and η decays for each spectral line of interest, without
making any assumptions on the model order of the signal.

3. THE ETCAPA ALGORITHM

Averaging the m echoes yields the averaged signal

x(t) =

M−1∑
m=0

{
K∑
k=1

1

M
αkλ

t
kρ
m
k + w(t)

}
(2)

=

K∑
k=1

λtkαk
1

M

M−1∑
m=0

ρmk + e(t) (3)

=

K∑
k=1

λtkα̃k + e(t) (4)

for t = 1, . . . , N − 1, where e(t) denotes the echo averaged
noise and interference. It should be noted that the thus av-
eraged interference components will, in general, be out of
phase between the different echoes, thereby causing an im-
proved signal-to-interference-plus-noise ratio (SINR) in the
averaged signal, as compared to the full ET signal. It is also
worth noting that the averaged amplitudes, α̃k, will be less or
equal to αk as

0 <
1

M

M−1∑
m=0

ρm =
1

M

M−1∑
m=0

e−2τηkm ≤ 1 (5)

Clearly, when averaging the echoes, the damping constants
appearing in the exponent of λ will be combined, making it
hard to separate them by just examining the averaged echo.
Therefore, let γ denote the combined damping constant of a
generic spectral line, such that

γ = β + η (6)

Define a narrowband bandpass filter

hγ,ω =
[
h0 . . . hL−1

]T (7)

focused at frequency ω and the combined damping γ. Then,
filtering the vector containing the L most recent samples of
the averaged ET signal,

x(t) =
[
x(t) . . . x(t+ L− 1)

]T ∈ CL×1 (8)

for t = 0, . . . , N − L− 1, through hγ,ω yields

xF (t) = h∗γ,ωx(t) (9)

=
[
h∗γ,ωaL(γ, ω)

]
α̃λt + eF (t) (10)

where eF (t) denotes the filtered noise component, and

aL(γ, ω) =
[

1 . . . λL−1
]T

(11)

In order to ensure that the frequency and decay component of
interest is passed undistorted, the filter is constrained so that

h∗γ,ωaL(γ, ω) = 1 (12)

suggesting that filter focused at (γ, ω) minimizing the signal
variance should be formed as

hγ,ω = arg min
hγ,ω

(
h∗γ,ωR̂hγ,ω

)
subj. to (12)

=
R̂−1aL(γ, ω)

a∗L(γ, ω)R̂−1aL(γ, ω)
(13)

with R̂ being a covariance estimate of x(t). In vector form,
the resulting signal becomes

xFN−L = α̃aN−L + eFN−L (14)

where eFN−L denotes a vector containing the N − L most
recent filtered noise components and aN−L analogously to
(11). The amplitude estimate for the corresponding (γ, ω)
component may then be formed using the least squares esti-
mate

ˆ̃α(γ, ω) =
[
aHN−LaN−L

]−1
aHN−LxFN−L (15)

with the resulting ˆ̃α(γ, ω) estimate yielding a spectral sur-
face over a pre-chosen 2-D grid, indicating the frequencies
and combined dampings with notable power. In order to re-
fine the estimates for these components, we propose forming
a CAPES-like [10] estimate, refining the amplitude estimates
of these components using dAPES [11]. The resulting ampli-
tude estimates will be more accurate than the ones obtained
by (15), and can then be used in a second refinement stage
estimating the power distribution over β and η separately, for
each notable component. By iterating the steps in (13)-(15)
for every echo in the signal separately, M estimates of αm are
obtained, one for every echo, instead of only the averaged es-
timate obtained in (15). Denote α̂(γ, ω) the (M × 1) vector
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Fig. 2. The dCapon spectrum over frequency and total damp-
ing, γ, for an echo-averaged measured methamphetamine
NQR signal with SNR = 5.8 dB.

containing these estimates. Redefining the complex ampli-
tudes of echo m as αm = αρm, it follows then from the least
squares estimation, and (14), that

α̂m = αρm + εm (16)

If expressed in vector form,

α̂ = αρη + ε (17)

where
ρη =

[
1 . . . ρM−1

]
(18)

Then, minimizing the modeling error over the unknown α and
η, such that

{α, η} = arg min
α,η
||α̂− ρηα||22 (19)

yields
α̂ = (ρ∗ηρη)−1ρ∗ηα̂ (20)

which inserted in (19) results in

η̂ = arg min
η
α̂∗Π⊥ρ α̂ (21)

where
Π⊥ρ = I−Πρ = I− ρ̂α̂ (22)

denotes the projection onto the space orthogonal to ρη . The
minimization in (21) may be calculated using standard gradi-
ent search techniques, e.g. using the Newton method, yield-
ing the estimated echo train damping η̂. The corresponding β
estimate may then simply be obtained using (6), as

β̂ = γ̂ − η̂ (23)

Finally, the corresponding amplitude estimate for this com-
ponent, α, may easily be re-estimated by either inserting η̂ in
(4), or by using the least squares estimate derived above.

Fig. 3. The dCapon spectrum for an echo-averaged exper-
imentally realistic methamphetamine NQR signal corrupted
by sinusoidal interference.

4. NUMERICAL RESULTS

We proceed to examine the accuracy of the proposed esti-
mator using methamphetamine measurements performed on
seizures by the Japanese customs, formed on M = 15 echoes
with N = 295 samples each. This data set is estimated to
have a signal-to-noise ratio (SNR) of 5.8 dB, where SNR is
defined as

SNR = 10 · log

(
Psignal

Pnoise

)
(dB) (24)

and P(·) is the power of respective signal type. Figure 2 shows
the dCapon spectral estimate of the (γ, ω) surface for the av-
eraged signal x(t), which if forming the ETCAPA estimate
obtained using (15), (19), (21), and (23), for its spectral peak
of interest, yields

θ̂ETCAPA =
[
f̂ β̂ η̂

]
=
[
−0.0001 0.00578 0.001921

] (25)

where f = ω/2π. This can be compared to the parametric
estimate obtained by the ETAML algorithm [8], yielding

θ̂ETAML =
[
−0.00016 0.00543 0.001927

]
(26)

indicating a similar accuracy for both the parametric and non-
parametric estimators. The difference in the estimation of
frequency is due to the used grid size, which is not the case
for β and η. The difference in these estimates as compared
to the ETAML estimates can likely be explained by the fact
that the measured NQR signals will not be corrupted by an
white additive noise, and even though the ETAML algorithm
exploits a low-order AR approximation of this noise, it will
likely yield estimates that are somewhat biased. In order to
clarify this, we proceed to examine simulated data, consid-
ering the multi-line region of a sample of TNT (see [8] for
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Fig. 4. NRMSE estimations over different values of filter
length. A minimum error is reached around 110, which is
about N/3.

details this data set). Table 1 shows the resulting estimation
errors for the ETCAPA estimates, using M = 32 echoes with
N = 295 samples each, with SNR =10 dB, showing that the
resulting errors can be considered to lie close to the grid spac-
ing, which is 5 · 10−4 over frequency and 0.5 · 10−4 over β.
Finally, we examine a simulated data set mimicking the ear-
lier methamphetamine measurements, but now corrupted by
several strong RFI components, 40 dB stronger than the stud-
ied NQR signal. Such very strong RFI components often oc-
curs in non-shielded NQR measurements, but will due to the
averaging of echoes influence the estimate less than could be
expected. This can be seen in Figure 3, which clearly shows
how the interference signals are weakened due to the averag-
ing, thereby not disturbing the spectral estimate of the signal
of interest. In this case, the strong interference components
will corrupt the ETAML estimates, making them meaning-
less, whereas the ETCAPA estimates are almost as accurate
as the ones obtained if no interference was present, being just
above the level of the grid spacing. It is worth noting that ex-
cept for defining a search grid over frequency and damping in
the initial dCapon estimate, one also has to choose the length
of the filters in (10). The performance of the estimator will
be relatively insensitive to this choice, as shown in Figure 4,
illustrating the normalized root mean error for the parameters
β and η, as obtained using 500 Monte-Carlo simulations, for
a SNR= 10 dB, for varying the filter lengths. The figure sug-
gests that an appropriate should be set as floor(N/3), where
N is the number of samples. This is also how the filter length
has been selected in the simulations above. It should be noted
that the spectral lines for the considered cases will lie some-
what off the used spectral grid, indicating the typical robust-
ness to the the assumption that the grid coincides with the true
parameters (see also the related discussion in [12, 13]).

Table 1. Error estimates of frequencies and dampings for the
K = 4 NQR components of monoclinic TNT.

k 1 2 3 4
∆fk × 10−5 -4.9 5.0 3.7 11.5
∆βk × 10−5 67 36 11 -17.5
∆ηk × 10−5 9.0 -.09 0.12 -0.25
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