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ABSTRACT 

 

A simple scheme to improve the readability of the Wigner 

distribution is introduced in this paper. The method aims to 

suppress the interference terms by way of multiplying the 

original distribution with a two-dimensional mask. The 

design of the mask is based on the localization of the signal 

components in the time-frequency plane. This is made 

possible by exploiting the geometry of the cross-terms 

generated between the signal at hand and a circularly 

symmetric Gaussian atom. Experimentation has shown that 

the proposed approach can deliver a more readable 

representation as compared with other familiar methods of 

interference reduction. 

 

Index Terms— Wigner distribution, time-frequency 

analysis, cross-terms interference 

 

1. INTRODUCTION 

 

Joint time-frequency (TF) analysis has proved to be a useful 

signal processing area with a wide range of applications. TF 

representations are usually classified into linear and bilinear 

methods. Although linearity is an attractive property, it is 

desirable to have distributions behaving similarly to a TF 

energy density function. Since energy is a quadratic signal 

representation, bilinear methods can be interpreted in terms 

of signal energy. 

  A prominent member of the class of quadratic TF 

representations is the Wigner distribution (WD) [1], which 

satisfies an exceptionally large number of desirable 

mathematical properties and exhibits the least amount of 

spread in the TF plane [2]. While the bilinearity of the WD 

increases the sharpness of local signal structure, it also 

generates spurious values between separate signal 

components in the TF plane. This interference phenomenon 

can significantly reduce the readability of the WD in 

practical applications especially when multi-component or 

non-linear frequency modulated signals are concerned. 

A practically useful TF representation must be accurate 

and easy to interpret. Therefore, it should exhibit high 

concentration of the signal components as well as 

maintaining the presence of any misleading interference to a 

minimum. Considerable amount of research has been carried 

out with the aim of developing modified versions of the WD 

with suppressed cross-terms. Most of these methods were 

concerned with the design of interference-attenuating 

kernels, and can be classified into signal-independent (e.g. 

[3], [4], [5]), and signal dependent schemes (e.g. [6]). The 

common shortcoming of the above methods is that the 

attenuation of interference generally comes at the cost of 

increasing the TF spread of the auto-terms, which reduces 

the accuracy of the representation. 

An alternative approach [7] for decreasing the amount of 

interference is to post-process the WD with a masking 

operation. We draw on this strategy using a computationally 

efficient technique to estimate the supports of the signal 

components in the TF plane. Based on this information, we 

design and apply a TF mask such that any cross-terms 

outside the areas of actual signal energy are eliminated. 

The paper is organized into four sections. Section 2 

provides an overview of the theoretical background and 

describes the algorithm. In section 3, the proposed method is 

experimentally assessed and contrasted with some well-

known TF representations. Concluding remarks are finally 

made in section 4. 

 

2. CROSS-TERM SUPPRESSION 

 

2.1. Theoretical Background  

 

The WD of the signal  ( ) is defined as [1], 
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Due to its quadratic structure in the signal  ( ), the WD is 

subject to the quadratic superposition principle. Thus, for 

the two-component signal  ( )    ( )    ( )  the WD 

can be expressed as: 
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where it can be seen that apart from the WDs of the 

individual signal elements there appears an additional 

component, i.e. the cross-term, which is equal to the real 

part of the cross-WD,  
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In general, for L separate signal components there will exist 

L(L-1)/2 spurious terms which have an oscillatory nature 

and their amplitude can peak at a value twice as high as that 

of the actual signal terms [1]. 

The geometry of the cross-terms of the WD in the TF 

plane has been well-studied [8], [9]. It is known that a cross-

term will appear midway between any two TF points of 

actual signal presence. Therefore, for every pair of signal 

points (      )  and (      ) , there will be an interference 

element in the middle of the imaginary line connecting the 

two points. The coordinates (          ) of the cross-term can 

then be obtained as: 

     
     

 
                      

     

 
  .            (4) 

The direction of oscillation of the cross-terms is 

perpendicular to the line connecting the two signal points 

whereas the rate of oscillation is proportional to the distance 

between the two points. 

 

2.2. The Proposed Algorithm  

 

Central to the presented method is the detection of the areas 

in the TF plane within which the actual signal components 

lie. We show that this can be achieved by exploiting the 

simple geometric law (4). Let   ( ) be the arbitrary signal 

whose WD we aim to enhance, and   ( ) be an auxiliary, 

user-defined signal.. Then, according to (2), by subtracting 

the corresponding WDs from the WD of the sum of the two 

signals we can isolate the cross-terms between   ( )  and 

  ( ) :  

    {      
(   )}    (   )     

(   )     
(   ) .   (5) 

If the signal   ( )  possesses circular symmetry around a 

known centre in the TF plane, then due to (4) the shape of 

the isolated cross-terms will reflect the TF location of the 

signal   ( ). Consequently, it is possible to compute the TF 

location of   ( ) based on (4), since the coordinates of the 

interference and of   ( ) can both be determined. A detailed 

description of the overall process that we have followed to 

implement the above idea is provided next.  The 

presentation is based on an illustrative example. (Fig. 1) 

    The WD of a sinusoidal frequency-modulated (FM) 

signal   ( ) is shown in Fig.1a whereas the WD of the sum 

 ( )  of the above signal and a Gaussian atom   ( )  is 

depicted in Fig.1b. The interference between the two signals 

is precisely detected after carrying out the subtractions in 

(5), as it can be seen in Fig.1c. The above generation of 

interference is also illustrated in Fig. 2. This oscillating 

interference is subsequently rectified, and smoothed using a 

2-D averaging window. (Fig.1d). The binary image of 

Fig.1e is created by thresholding the image of Fig.1d.   

    Since the support of the Gaussian atom is not a single TF 

point, the size of the black area of Fig.1e is the result of the 

superposition of the individual interactions between   ( ) 

and all the points within the support of the Gaussian atom. 

 
                            (a)                                                 (b) 

 
                             (c)                                                 (d) 

 
                             (e)                                                (f) 

 
                             (g)                                                (h) 

 
   (i) 

 

Fig. 1. Auto-term localization example: (a) The WD of an example 

signal; (b) the WD of the sum of the original signal and a Gaussian 

atom; (c) detection of the induced cross-terms (d) rectification and 

smoothing of the cross-terms; (e) generation of a uniform 

representation; (f) trimmed area; (g) projection to the estimated 

support of the example signal; (h) ‘closing’ and formation of mask; 

(i) the masked WD of (a). 
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Fig. 2. Isolation of interference between an arbitrary signal 

  ( ) and the user-defined   ( ). 

 

 
Fig. 3. A workflow diagram of the proposed algorithm for 

localizing the TF support of an arbitrary signal   ( ). 

 

However, we aim to estimate the portion of this area which 

is only due to the interaction with the centre point of the 

Gaussian. From the geometry of (4), we can consider that 

this region must be expanded by r/2 on all sides – where r is 

the radius of the atom. Therefore, we erode the edges of the 

area in Fig.1e by r/2 to obtain the desirable region (Fig.1f). 

Now, using the coordinates of the centre of the Gaussian on 

one hand, and those of the points within the eroded area on 

the other, we can invert (4). This way, we construct an 

estimate of the original location of the sinusoidal FM signal 

by projecting the eroded area into that location (Fig.1g). The 

gaps due to the resulting magnification are subsequently 

removed by a ‘closing’ operation [10], and all non-zero 

values are set equal to one. The generated mask which is 

presented in Fig.1h is then multiplied with the original WD 

of Fig.1a to suppress the cross-terms and enhance its 

readability (Fig.1i). The workflow diagram of the proposed 

algorithm is shown in Fig. 3. 

 
                          (a)                                               (b) 

 
                          (c)                                                (d) 

Fig. 4. TF representation of the signal in the first example 

according to: (a) the proposed method; (b) the SPWD; (c) the 

CWD; (d) the ZAMD. 

 

 

3. EXPERIMENTAL RESULTS 

 

In this Section, we showcase the proposed algorithm in a 

series of tutorial examples. The first example contains non-

overlapping elements in the TF plane, whereas there is 

severe overlap of the signal components in the second 

example. The waveforms in the first two examples are 

computer simulations, while the third example involves a 

real-life recording. 

    We have also compared the proposed scheme with three 

well-known reduced-interference TF representations. In 

particular, we have considered the smoothed pseudo Wigner 

distribution (SPWD) [3], the Choi-Williams distribution 

(CWD) [4], and the Zhao-Atlas-Marks distribution (ZAMD) 

[5]. Hamming windows were employed for the above 

methods. The different kernel parameters required for their 

implementation were all determined empirically in order to 

achieve both high time-frequency concentration and 

substantial cross-terms suppression. 

 

3.1. First Example: Non-overlapping Auto Terms 

 

The signal in the first example is the sum of a quadratic 

chirp, a linear chirp and a third component which is 

obtained as the impulse response of a Butterworth band-pass 

filter. The three components have different orientations, and 

do not overlap in the TF plane. The representation of the 

above signal based on the proposed method is shown in Fig. 

4a. It is clear that the signal appears well-concentrated, and 

  

  ( ) 

  ( ) 

WD 

WD 

WD 

   {      
(   )} 
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                           (a)                                              (b) 

 
                           (c)                                               (d) 

Fig. 5. TF representation of the signal in the second example 

according to: (a) the proposed method; (b) the SPWD; (c) the 

CWD; (d) the ZAMD. 

 

the cross-terms have been largely suppressed. The SPWD, 

CWD, and ZAMD on the other hand significantly broaden 

the auto-terms and introduce various distortions as it can be 

observed in Fig.4b – Fig.4d. 

 

3.2. Second Example: Overlapping Auto Terms 

 

The second example signal is composed of four unit-pulses 

and four constant-frequency sinusoids designed to form a 

grid pattern. This is a challenging scenario for most TF 

representations as it can be appreciated by examining Fig.5b 

– Fig.5d. The CWD apparently suffers from heavy distortion 

due to the overlap in time of the four sinusoids, and 

therefore fails to resolve this signal. The SPWD enlarges the 

auto-terms without being able either to suppress interference 

equally across the TF plane. Although the grid structure can 

be recognized in the ZAMD there still remains a 

considerable amount of interference. Nevertheless, the 

proposed method yields a highly readable result with most 

of the WD cross-terms eliminated, and auto-terms that are 

relatively accurately represented in Fig.5a. 

 

3.3. Third Example: Real-Life Signal 

 

The final example involves a digitized echolocation pulse 

emitted by the Large Brown Bat, Eptesicus Fuscus, which is 

a common test signal in the literature related to TF analysis. 

The signal consists of 400 samples and the sampling period 

was 7 microseconds. The results for the different TF 

methods are shown in Fig.6. Again, the simple scheme 

proposed in this work   outperforms   the   three    alternative 

 

 
                           (a)                                              (b) 

 
                           (c)                                               (d) 

Fig. 6. TF representation of the signal in the third example 

according to: (a) the proposed method; (b) the SPWD; (c) the 

CWD; (d) the ZAMD. 

 

approaches since it can provide the highest resolution of the 

analysed signal. 

 

4. CONCLUSION 

 

A simple method for enhancing the readability of the WD 

by suppressing its cross-terms has been presented. The 

geometric law defining the positions of the interference in 

the TF plane has been exploited in order to find the location 

of the actual signal components. Subsequently, any values 

of the WD which fall outside the estimated support are 

reduced to zero. The result is a representation which 

considerably reduces misleading interference, and can 

preserve the concentration of the auto-terms of the original 

WD. Experimentation has shown that the proposed scheme 

can outperform other commonly used methods for the 

reduction of cross-terms, in the sense that it delivers a 

clearer picture of the TF behavior of the signal.              
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