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ABSTRACT

We present a technique for determining the autocorrelation
of an arbitrarily time-variant system response. Our approach
relies on a key relation, introduced in [1], between the sys-
tem response autocorrelation function and certain 2nd and
4th order moments of the system input and (noisy) output
signals, with no other prior information about the dynamics
of the system response required. We introduce a “Wiener
problem” interpretation of this key relation, which enables
us to benefit from the wealth of existing results about the
dynamics and performance of standard adaptive filters. In
particular, we propose time-recursive estimates for the sys-
tem response autocorrelation, with significantly reduced com-
putational cost, as compared to previously proposed (non-
recursive) estimates. Moreover, our procedure can also be
customized to track (slow) variations in the system response
autocorrelation when such variations are present. We use an
example to demonstrate the advantage of applying standard
adaptive algorithms such as LMS, NLMS or RLS to obtain an
estimate of the desired system response autocorrelation.

Index Terms— Autocorrelation, time-variant system

1. INTRODUCTION

Time-variant systems are often encountered in engineering
applications, ranging from underwater acoustic communica-
tions to array processing. The inability of conventional (i.e.,
stationary-based) system identification techniques to cope
with rapid time variation has motivated the development of
novel approaches to identify linear, arbitrarily time-variant
systems.

Several approaches were suggested for solving this non-
stationary identification problem. Some, such as [2,3] involve
a statistical characterization of time-variant impulse response
in terms of its average power spectrum or, equivalently, its
average autocorrelation. Others, such as in [4, 5], involve a
dynamic characterization of the time-variant system response
in terms of a state-space model. In either case, one is forced
to rely on substantial prior information about the nature of the

time-variation of the system response.
Our objective is to estimate the necessary prior informa-

tion, such as the average autocorrelation of the time-variant
system response, from measurements of the input and output
signals. We assume, as in [1], that the input-output relation of
the discrete-time time-variant system is FIR, viz.,

d(t) = W (t)U(t) + v(t) (1)

whereW (t) = [w0(t) w1(t) · · ·wM−1(t)],U(t) = [u(t) u(t−
1) · · · u(t−M +1)]T , u(t) is the scalar input signal and v(t)
is additive noise.

A prior-information-free approach for estimation of the
autocorrelation of the time variant system responseW (t) was
introduced in [1,6], based on a novel explicit relation between
the autocorrelation ofW (t) and certain 2nd and 4th order mo-
ments of the signals u(t) and d(t). Such moments can be es-
timated via long-term averaging directly from measurements
of the system input and output signals. This results in a non-
recursive (off-line) solution that uses a given signal record of
suitable length. The same (non-recursive) solution was also
obtained in [5] via an approximate modeling argument that
led to a deterministic least squares problems, whose solution
provides an estimate for the autocorrelation of W (t).

In this paper we introduce a Wiener problem (i.e., a min-
imum mean-square error linear estimation) interpretation of
the key relation in [1], which enables us to exploit the well-
developed theory of linear adaptive filters [7]. In particular we
propose time-recursive procedures for estimation of CW (·),
the autocorrelation of W (t), with significantly improved per-
formance, as compared with the static procedures described
in [1, 5] (see Sec. 4). To be specific, our procedure:

• offers a dramatic reduction in computational cost

• can efficiently incorporate new measurements as they
become available

• can be customized to track (slow) variations in CW (·)
when such variations are present.
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In addition we are able to benefit from the wealth of existing
results about the dynamics and performance of standard adap-
tive filters (see Sec. 5). We use an example to demonstrate in
Sec. 6 that the normalized LMS algorithm with optimized
varying step size (see, e.g. [8]) may offer the best tradeoff
between performance and computational cost.

2. PROBLEM FORMULATION

We extend somewhat the conceptual frameworks used in [1]
and [5]. Thus we assume that u(·), W (·), v(·) are all random
and mutually independent. The input signal u(·) and the addi-
tive noise v(·) are zero-mean stationary (in the narrow sense).
The system response W (·) can be stationary, asymptotically-
mean-stationary [9] or slowly-varying non-stationary, and its
elements can be correlated with each other.

In this paper we consider two distinct scenarios of esti-
mating the autocorrelation of the system response W (t):

• a static scenario in which W (t) is stationary or, more
generally, asymptotically-mean-stationary, and we
wish to estimate the average autocorrelation

CW (m) , 〈E{W ∗(t)W (t+m)} 〉t

where 〈 〉t denotes a (long-term) time average over
[0 ∞). Notice that when W (t) is stationary, the time-
averaging operation 〈 〉t can be dropped.

• a dynamic scenario in which W (t) is non-stationary
with slowly-varying statistics, and we wish to estimate
and track the time-varying autocorrelation

CW (m; t) , E{W ∗(t)W (t+m)}

for every time-instant “t”.

In both scenarios we make no other prior assumptions about
the nature of time-variation of W (t), and we use only mea-
surements of the input signal u(·) and the output signal d(·)
to form our autocorrelation estimates.

The autocorrelation CW (·) provides sufficient prior sta-
tistical information for those approaches mentioned before to
identify W (t). The static scenario was addressed in [1] and
[5]. In particular, CW (m) was shown in [1] to satisfy a matrix
equation, viz.,

MU
(

cv(m)
vec{CW (m)}

)
=

(
cd(m)

vec{Cξ(m)}

)
(2a)

MU ,

(
1 [vec{C∗U (m)}]∗

vec{C∗U (m)} ΓU (m)

)
(2b)

where the asterisk (∗) denotes complex transposition and
vec{·} denotes vectorization of a matrix by columns [10].
The linear equation (2) relies on several (average) moments

that can all be estimated from measurements of the system
input and output. Thus, CU (m) is the autocorrelation of the
stationary vector U(t), viz.,

CU (m) , E{U(t+m)U∗(t)}

and

ΓU (m) = E
{[
Ũ(t+m)⊗ U(t)

] [
Ũ(t+m)⊗ U(t)

]∗}
is a fourth-order moment of U(t), where the tilde (∼) de-
notes element-wise complex conjugation, and ⊗ denotes
the Kronecker product [10]. Similarly, cd(m) , 〈E{d(t +
m)d∗(t)} 〉t is the average autocorrelation of the non-stationary
output signal d(·), and

Cξ(m) , 〈E{ξ∗(t)ξ(t+m)} 〉t

is the average autocorrelation of the non-stationary composite
signal ξ(t) , d(t)U∗(t).

The linear equation (2) was originally derived under the
assumption that W (t) is deterministic (see, e.g. [1]). How-
ever, the same relations hold in the more general case when
W (t) is random, asymptotically-mean-stationary, possibly
with a non-vanishing mean. This more general characteri-
zation of W (t) is needed, for instance, in the discussion of
fading communication channels [11].

In fact, the equation (2) holds even in the dynamic case,
but with time-dependent versions of CW (·), cd(·) and Cξ(·).
This observation allows us to apply adaptive (time-recursive)
algorithms to track the time-variation of CW (m; t) (see Sec.
4). Moreover, the same algorithms can also be used to provide
a computationally-efficient solution in the static case, offering
a significant cost reduction as compared to the non-recursive
solutions described in [1] and [5].

Our approach to constructing time-recursive solutions
for the linear equation (2) relies on a minimum-mean-square-
error (MMSE) linear estimation interpretation of this equation
which we introduce in Sec. 3. We show that (2) is a so-called
discrete-time Wiener-Hopf equation for a suitably defined
“Wiener problem”. This observation puts at our disposal a
large body of techniques and results from the theory of adap-
tive linear filters [7]. In particular it offers a rich selection of
computationally efficient implementations and some closed-
form results about the steady state and tracking performance
of our CW (·) estimate (see Sec. 5).

3. LEAST-SQUARES INTERPRETATION OF (2)

We observe thatMU can be interpreted as

MU = E

{(
1

Ψm(t)

)(
1

Ψm(t)

)∗}
where Ψm(t) , Ũ(t+m)⊗U(t) is the Kronecker product of
two column vectors. ThusMU is the autocorrelation matrix
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of U(t) ,

(
1

Ψm(t)

)
, as pointed out in [1]. We now also

observe that the right-hand-side of (2a) is in fact equal to

E

{(
1

Ψm(t)

)
D∗m(t)

}
, RUD(m)

whereDm(t) , d∗(t+m)d(t). Hence (2) is the Wiener-Hopf
equation for the MMSE problem

min
H,b

E

∣∣∣∣Dm(t)−
[
b H

]( 1
Ψm(t)

)∣∣∣∣2
whose (optimal) solution is (recall that H is a row vector)

bopt = c∗v(m), Hopt = [vec{CW (m)}]∗

Alternatively, we can write this as

min
H,b

E

∣∣∣∣Dm(t)−
(
HΨm(t) + b

)∣∣∣∣2 (3)

which is a linear MMSE estimation problem (a.k.a, “Wiener
problem”) for non-zero-mean random variables.

Since (3) involves non-zero-mean random variables, the
corresponding Wiener-Hopf equation determines both the ad-
ditive constant “b” and the coefficient vector “H” (equiva-
lently both cv(m) and vec{CW (m)}). We shall refer to this
format as the non-centered Wiener-Hopf equation. It can be
replaced by two separate equations, one for “b” alone, and the
other one for “H” alone. The resulting centered Wiener-Hopf
equation is

E{Ψm(t) Ψm(t)
∗
}H∗ = E{Ψm(t) Dm(t)

∗
} (4)

where Ψm(t) , Dm(t) are centered versions of these random
variables, namely,

Ψm(t) , Ψm(t)− EΨm(t)

Dm(t) , Dm(t)− EDm(t)

This is the standard version of the Wiener-Hopf equation pre-
sented in all textbooks (see, e.g. [7]) and it corresponds to the
centered Wiener problem

min
H

E
∣∣∣Dm(t)−H Ψm(t)

∣∣∣2 (5)

4. ADAPTIVE SOLUTIONS

Based on our Wiener problem interpretation (3), we pro-
pose to use standard adaptive algorithms to provide a (time-
recursive) solution for the linear equation (2). We present
here the recursions for normalized LMS and for RLS, which
we then use in Sec. 6 in our numerical example.

NLMS with time varying step size [8]
The NLMS algorithm with time varying step size for the

Wiener problem (3) is

em(t) = Dm(t)−Hm(t− 1)Ψm(t)

Hm(t) = Hm(t− 1) + µ(t)em(t) [Ψ∗m(t)Ψm(t)]
−1

Ψ∗m(t)

µ(t) = µ(t− 1)
1− µ(t− 1)/M2

1− µ2(t− 1)/M2
(6)

where M2 is the length of the vector Ψm(t) and the initial
value of µ can be chosen as µ(0) = 1 − Jmin

σ2
d

where Jmin
is the variance of the residual eopt(t) when estimation is as-
sumed to be perfect i.e., Dm(t) = Hm,optΨm(t) + em,opt(t)
and σ2

d is the initial estimation variance.
RLS

The RLS algorithm for the Wiener problem (3) is (0 <
λ < 1)

πm(t) = Pm(t− 1)Ψm(t)

km(t) =
πm(t)

λ+ Ψ∗m(t)πm(t)

em(t) = Dm(t)−Hm(t− 1)Ψm(t)

Hm(t) = Hm(t− 1) + km(t)e∗m(t)

Pm(t) = λ−1Pm(t− 1)− λ−1km(t)Ψ∗m(t)Pm(t− 1)

with initial values Hm(0) = 0 and Pm(0) = δ−1I .
Using time-recursive solutions for (2) results in a signif-

icant reduction in computational cost (see Sec. 5). It also
makes it possible to track variations of CW (m; t) in the dy-
namic version of our problem.

5. ACCURACY ANALYSIS

In the static case the variance of each element of the es-
timate ĈW (m) obtained by a non-recursive approach is
inversely proportional to N , the length of our data record
(for large N values). In fact, it is known [12] that the
probability density function of the scaled estimation error√
Nvec{ĈW (m) − CW (m)} converges, as N → ∞, to

a Gaussian zero-mean distribution with covariance equal
to JminR−1U (m), where RU (m) is the centered covari-
ance of Ψm(t) and Jmin is the minimal achievable value
of the Wiener problem cost function (3). This provides
an explicit characterization for the accuracy of ĈW (m),
namely for large N we have the explicit error covariance

expression E

{[
vec{ĈW (m) − CW (m)}

][
vec{ĈW (m) −

CW (m)}
]∗}
≈ 1

N JminR−1U (m).

In the dynamic (slowly-varying) case we can use standard
tracking algorithms such as LMS or RLS. Again, there are
known results about the accuracy of the resulting ĈW (m; t)
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DS DL

LMS 1
2µJminM

2 1
2µ tr

[
R−1U Rw

]
RLS 1−λ

2 Jmintr
[
R−1U

]
1
2µ tr

[
R−1U Rw

]
Table 1. Performance summary of LMS and RLS (small step
size)

estimates (see, e.g. [7]). In particular, the steady-state vari-
ance of elements of ĈW (m; t) is proportional to the step size
µ for LMS, and to (1 − λ) for exponentially weighted RLS.
Table 1 gives a summary of the performance of LMS and
RLS, where Ds is the steady state performance , DL is the
tracking performance and Rw is the autocorrelation function
of the process w(t) that generates W (t) via the random-walk
model W (t) = W (t− 1) + w(t).

6. NUMERICAL EXAMPLES

Fig. 1 and Fig. 2 both use the same set of data: the input sig-
nal u(t) and the additive noise v(t) are both zero-mean Gaus-
sian white noise signals, with cu(0) = 1. The memoryless
system gain w(t) is generated by passing a white Gaussian
signal through a narrow band (linear phase, FIR) lowpass fil-
ter, with a cutoff frequency of 0.035. The level of the additive
output noise v(t) is adjusted to achieve SNR = 5dB. Since
the length of the system response is M = 1, the autocorrela-
tion cw(m) is a scalar in our simulation. Estimator variance
is calculated by averaging over 200 independent realizations.
All estimator variances are normalized by c2w(0).
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Fig. 1. Convergence speed of three algorithms: non-recursive
, NLMS, and RLS for estimating cw(2)

Those figures compare three estimators: (i) non-recursive
solution of (2), as proposed in [1,5], (ii) corresponding NLSM
with time varying steps [8] and (iii) exponentially-weighted
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Fig. 2. Convergence speed of three algorithms: non-
recursive, NLMS and RLS for estimating cw(3)

RLS, with λ = 0.999. The results demonstrate the supe-
riority of NLMS over both the non-recursive solution and
exponentially-weighted RLS for short data records. Lower
estimator variances can be sometimes achieved with RLS
(see Fig. 2) with sufficiently long data records. Given these
mild differences in performance, NLMS appears to be the
preferred choice, due to its significantly lower computational
cost.

7. CONCLUDING REMARKS AND RELATION TO
PRIOR WORK

The only prior work on explicit estimation of CW (m) from
the signal u(·) and d(·), and without using any prior infor-
mation about the dynamics of W (t), was reported in [1, 5].
Both provided a non-recursive (off-line) estimate of CW (m),
albeit using very different approaches to derive their results.
In contrast, in this paper we introduce a Wiener problem in-
terpretation for the linear equation (2), involving the com-
posite signals Dm(t) and Ψm(t), which makes it possible
to use standard linear adaptive filtering algorithms to obtain
an estimate for CW (·), in both the static and the dynamic
versions of our problem. In particular, the LMS family of
adaptive algorithms offers a significant reduction in compu-
tational cost — from O(M6) + O(M4N) to O(M2N) for
a single lag value — as compared with the offline methods
of [1, 5]. In addition, we have relaxed the assumptions made
in previous work about the variation of W (t), allowing it to
be asymptotically-mean-stationary, or even arbitrarily non-
stationary with slowly-varying statistics. Thus our approach
achieves a drastic cost reduction, and applies to a wider family
of W (t) dynamics, as compared with the methods of [1, 5].
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