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ABSTRACT

In this paper we develop a new framework for Bayesian pa-
rameter estimation using adaptive waveforms by the minimal
free energy (FE) principle in the context of cognitive radar.
Unlike conventional approaches, the new method utilizes the
minimal FE principle as a unifying criterion for optimal esti-
mator design and waveform design. The FE principle seeks
to approximate the true density of the unknown parameters
in response to sequential measurement data. In the case of a
single unknown parameter we show that the estimators based
on the FE principle and the conventional Bayesian estimator
are identical. Moreover, the waveform design based on the
FE principle results in similar water-filling solution as the tra-
ditional mutual information method.

Index Terms— Cognitive Radar, Free-Energy Principle,
Adaptive Waveform, Machine Learning

1. INTRODUCTION

Cognitive radar [1] is considered as an intelligent active sens-
ing system that utilizes adaptive radar waveforms (e.g. [2, 3])
and machine learning techniques to achieve improved perfor-
mance for radar tasks such as target recognition [4, 5], sensor
scheduling [6] and scene analysis [7]. Motivated by recent de-
velopment in Bayesian brain theory that characterizes human
or animal brains for adaptive perception and learning, we pro-
pose to use the free-energy principle as a unifying approach
for adaptive waveform design and for sequential target param-
eter estimation. Given a probabilistic model of some data Y
conditioned on parameters θ, we can show that by the Bayes’
theory, the logarithm of the marginal likelihood (also called
evidence) [8] can be written as

log p(Y ) = −F +KL[q(θ)||p(θ|Y )] (1)

where the first term F in (1) is called the free energy

F = −
∫

q(θ)log
p(Y, θ)

q(θ)
dθ (2)
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and the second term KL[q(θ)||p(θ|Y )] is the Kullback Liebler
(KL) divergence from the density q(θ) to the posterior density
p(θ|Y ), which is defined as

KL[q(θ)||p(θ|Y )] =

∫
q(θ)log

q(θ)

p(θ|Y )
dθ (3)

It is readily to see from (1) and (3) the KL divergence is mini-
mized when the density q(θ) is equal to the true posterior den-
sity p(θ|Y ). Hence, minimizing the free energy F is equiv-
alent to maximizing the model evidence p(Y ). This obser-
vation implies that, from the statistical inference standpoint,
minimizing free energy is amount to choosing the approxi-
mate posterior q(θ) as close as possible to the true posterior.
This becomes the underlying reason for the well known varia-
tional Bayesian (VB) approach in machine learning [9], signal
processing [10, 11] and neuro-imaging data analysis [8, 12].

This paper builds upon our prior work in adaptive wave-
form design and sequential Bayesian estimation for cognitive
radar [13, 3]. In [13] we developed a sequential Bayesian esti-
mation algorithm that utilizes adaptive waveform methods to
achieve reduced estimation error variance and faster conver-
gence for the estimator. However, the design of the estimator
and the design of adaptive waveform are based on two dif-
ferent metrics, i.e., the minimal mean squared error (MMSE)
principle and the maximal mutual information (MI) principle,
respectively. Hence, a unified framework for transmission
waveform design and sequential target parameter estimation
in the context of cognitive radar is lacking.

In this paper we consider the problem of sequential es-
timation of radar target using adaptive waveforms under the
free energy principle. The cognitive radar iteratively trans-
mits adaptive waveforms in response to the received radar
measurement. The estimation problem and the waveform de-
sign problem are formulated by minimizing the free energy
that is dependent of the radar target return, the transmission
waveform, and the target parameter to be estimated. We will
show that, using adaptive waveforms, the proposed method
achieves faster convergence and lower estimation error vari-
ances compared with the non-adaptive waveform method. Fur-
thermore, under the assumption of the Gaussian data model in
the presence of a single unknown parameter, we show that the
FE estimator is the same as the conventional Bayesian MMSE
estimator and that the FE waveform design results in similar
solution to the MI based waveform design.
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2. SIGNAL MODEL

Here we consider a mono-static configuration where the radar
antenna can switch between the transmit mode and the receive
mode. The received backscattered signal can be written in the
frequency domain as

Yj(fq) = Hj(fq)Si(fq) +Wj(fq) (4)

where Si(fq) is the frequency spectrum of the transmitted
waveform with the energy constraint 1

Q

∑Q
q=1 Si(fq)S

∗
i (fq) ≤

Es. Wj(fq) is the power spectrum of the additive Gaussian
noise. Hj(fq) is the Fourier transform of the impulse re-
sponse of the target. Here, i is the index for transmission
cycle. Each cycle consists of l = 1, · · ·L repeated trans-
mission and reception. At i-th transmission cycle, a different
waveform Si(fq) is used while within each cycle, the same
waveform Si(fq) is used. The j-th (where j = (i − 1) × l)
measurement vector is given by

yj = [Yj(fq), · · · , Yj(fQ)] , j = 1, · · · , J (5)

The probability models of the signals are given by

Hj(fq) ∼ CN
(
µh(q), σ

2
h(q)

)
(6)

Yj(fq) ∼ CN
(
S(fq)µh(q), σ

2
y(q))

)
(7)

Wj(fq) ∼ CN
(
0, σ2

w(q)
)

(8)

For simplicity, here we assume that the mean µh(q) of the
target response is unknown and needs to be estimated. The
goal of the sequential estimation problem is two-fold: First,
to obtain the estimate the mean of target response µh(q) in
a Bayesian setting. Second, to design a waveform Si(fq)
such that the estimation process converges faster. Both design
problems are solved using the minimal free energy principle.

3. SEQUENTIAL ESTIMATION BY FREE ENERGY
PRINCIPLE

By the sequential Bayesian estimation theory [14, 15], we
model the unknown µh(fq) as a random process αq with an
initial prior Gaussian distribution p0(αq) = CN

(
α0, σ

2
α(q)

)
.

Let rJ (αq) denote the recognition density of αq at the J-th
measurement. The recognition density is an approximation
of the true density of the parameter of interest. When J = 0,
we choose rJ (αq) = p0(αq). Ideally,

rJ(αq) → µh(q)δ (αq − µh(q)) as J → ∞. (9)

Hence, the parameter estimation problem amounts to comput-
ing the recognition density rJ(αq) so that the estimate at J-th
measurement is

α̂q(J) =

∫
αqrJ(αq)dαq (10)

Let Y1:J(fq) denote the collection of measurements {Yj(fq)},
applying rJ (αq) and p(Y1:J (fq), αq) to (2), we obtain the ex-

pression for free energy at fq as

F(q) = −
∫

rJ(αq)log
p(Y1:J(fq), αq)

rJ(αq)
dαq (11)

= KL[rJ(αq)∥p(αq|Y1:J (fq))]− log p(YJ (fq))

−
J−1∑
j=1

log p(Yj(fq)) (12)

where the total free energy is F =
∑Q

q=1 F (q). Note that the

term −
∑J−1

j=1 logp(Yj(fq)) in (12) is non-negative, we then
re-define the free energy by discarding this term, which yields

F(q) = KL[rJ(αq)∥p(αq|Y1:J (fq))]−log p(YJ(fq)) (13)

Furthermore, noticing that YJ (fq) is a random variable, we
then define the expected free energy as

F̃(q) = ⟨F (q)⟩YJ (fq) (14)

= H(YJ(fq)) + ⟨KL[rJ(αq)∥p(αq|Y1:J (fq))]⟩YJ (fq)

where the expectation is defined by ⟨x⟩Y =
∫
p(Y )xdY and

the entropy is defined by

H(YJ (fq)) = −
∫

p(YJ (fq))log p(YJ(fq))dYJ (fq) (15)

Thus, the expected free energy in (14) is expressed as the
sum of the measurement entropy and the KL divergence be-
tween the recognition density and the posterior density. Fur-
thermore, notice that the free energy is a function of recog-
nition density rJ(αq), the measurement yJ(fq) and the en-
ergy spectrum density τi(fq) = |Si(fq)|2 of the transmission
waveform, the estimation problem is expressed as

rJ (αq) = arg min
rJ (αq)

Q∑
q=1

F̃ (rJ (αq),yJ (fq), τi(fq)) (16)

Note that the entropy term in (14) is independent of the recog-
nition density. Hence, (16) is simplified to

rJ (αq) = arg min
rJ (αq)

Q∑
q=1

KL [rJ (αq) ||p (αq|Y1:J (fq))] (17)

Next, the non-negative divergence term depends on recogni-
tion density rJ (αq) and equals zero if rJ (αq) equals the pos-
terior density. Hence, the total free energy in the system is
minimized if the recognition density is equal to the posterior
conditional density, which is given by

rJ (αq) = p(αq|Y1:J(fq)) =
p(αq, Y1:J(fq))

p (Y1:J(fq))
(18)

Since the relation between the parameter αq and YJ(fq) is
linear, the prior distribution of αq is Gaussian, and both the
conditional densities of YJ(fq) and HJ(fq) are Gaussian, we
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can easily prove that the posterior density of αq is also Gaus-
sian, which takes the form

αq|Y1:J (fq) ∼ CN
(
µαq (J), σ

2
αq|Y1:J (fq)

)
(19)

Next, we define σ2
αq,J

=
∫
(αq − α̂q(J))

2rJ (αq)dαq , where
α̂q(J) is defined in (10). By (18), we obtain the estimate and
the error variance σ2

αq|Y1:J
(fq) (denoted by νJ (q)) as follows:

α̂q(J) = µαq (J) (20)

= νJ (q)

(
µα(J − 1)

νJ−1(q)
+

S∗
i (fq)YJ(fq)

σ2
w + τi(q)σ2

h(q)

)
1

νJ(q)
=

1

νJ−1(q)
+

τi(q)

σ2
w + τi(q)σ2

h(q)
(21)

Eqn. (18) shows that, for a single parameter, the minimal FE
principle is equivalent to the MMSE method for sequential
Bayesian estimation.

4. WAVEFORM DESIGN BY FREE-ENERGY
PRINCIPLE

We define the (J − 1)-th prior distribution for the random
process αq

PJ−1(αq) = p0(αq)
J−1∏
j=1

p(Yj(fq)|αq)/
J−1∏
j=1

p(Yj(fq)) (22)

The expected free energy defined in (14) can be re-written as

F̃(rJ (αq) , YJ(fq), τi(q)) = KL
[
rJ (αq) ||pJ−1(αq)

]
−⟨log p (YJ(fq)|αq)⟩rJ (αq),p(YJ (fq))

(23)

By the Bayesian brain theory, we define complexity as the di-
vergence between recognition density and prior density and
accuracy as the expected likelihood over the parameter and
measurement space. Hence the free energy in (23) can be
interpreted as difference between complexity (first term) and
accuracy (second term). The waveform design problem is for-
mulated as the free energy minimization problem given be-
low:

τi(q) = arg min
τi(q)

∑Q
q=1 F̃(rJ (αq) , YJ(fq), τi(q))

subject to 1
Q

∑Q
q=1 τi(q) ≤ Es (24)

Notice from (23) that only the second term (accuracy) de-
pends on the waveform energy spectrum τi(q), the minimiza-
tion problem in (24) can be re-formulated as

τi(q) = argmax
τi(q)

Q∑
q=1

⟨log p (YJ (fq)|αq)⟩rJ (αq),p(YJ (fq))

subject to
1

Q

Q∑
q=1

τi(q) ≤ Es (25)

Note that YJ(fq)|αq ∼ CN
(
Si(fq)αq, σ

2
w(q)

)
, we obtain

accq(J) , ⟨log p (YJ(fq)|αq)⟩rJ (αq),p(YJ (fq))
(26)

= − log π − log
(
σ2
w(fq) + τi(q)σ

2
h(fq)

)
−

⟨
|YJ(fq)− Si(fq)αq|2

⟩
rJ (αq),p(YJ (fq))

σ2
w(fq) + τi(q)σ2

h(fq)
(27)

Furthermore, by an approximation of ⟨αq⟩rJ (αq) = µαq (J)

and ⟨|αq|2⟩rJ (αq) = νJ (q) + |µαq (J)|2, we obtain

⟨|YJ (fq)− Si(fq)αq|2⟩rJ (αq),p(YJ (fq)) = σ2
w(fq)

+τi(q)
(
σ2
h(fq) + νJ−1(q)

)
(28)

Therefore, (27) becomes

accq(J) = − log π − log
(
σ2
w(fq) + τi(q)σ

2
h(fq)

)
−
σ2
w(fq) + τi(q)

(
σ2
h(fq) + νJ−1(q)

)
σ2
w(fq) + τi(q)σ2

h(fq)
(29)

Using (29), the optimization problem in (25) for designing
τi(q) can be solved by the Lagrange form (ignoring terms that
are independent of τi(q)) as

L(τi, λ) =
Q∑

q=1

[
log
(
σ2
w(fq) + τi(q)σ

2
h(fq)

)
+

σ2
w(fq) + τi(q)

(
σ2
h(fq) + νJ−1(q)

)
σ2
w(fq) + τi(q)σ2

h(fq)

]
+ λ

(
Q∑

q=1

τi(q)− Es

)
By differentiating the above Lagrange function with respect
to τi(q), we obtain

σ2
h(fq)

(
σ2
w(fq) + τi(q)σ

2
h(fq)

)
+ νJ−1(q)

σ2
w(fq) + λ

(
σ2
w(fq) + τi(q)σ

2
h(fq)

)2
= 0 (30)

Noticing that (30) is a quadratic equation for τi(q), we solve
for the roots of the quadratic equation and select only the non-
negative root, which yields

τopti (q) =

[
η

2

(
1 +

√
1 +

4σ2
w(fq)νJ−1(q)

ησ4
h(fq)

)
− σ2

w(fq)

σ2
h(fq)

]+
(31)

It can be observed that this is a water-filling type solution
where η = − 1

λ is the constant water-level. The value of η
can be evaluated by inserting the solution (31) by the energy
constraint.

To benchmark the waveform design performance, we con-
sider the well known maximal mutual information (MI) method
by computing the MI between αq and YJ(fq) as

I(αq, Yj(fq)) = H(αq)− H(αq|Yj(fq)) (32)

Since the pdfs of αq and αq|YJ (fq) in our problem are Gaus-
sian, (32) can be re-written as

I(αq, YJ(fq)) = log
νJ−1(q)

νJ(q)
(33)
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Fig. 1. Estimation of mean target response

The waveform that minimizes the inverse of this variance-
ratio maximizes I(αq, YJ(fq)). Thus, the maximum mutual
information waveform design is expressed as follows

τi(q) = arg min
τi(q)

∑Q
q=1

νJ (q)
νJ−1(q)

subject to 1
Q

∑Q
q=1 τi(q) ≤ Es (34)

This optimization problem is reformulated as a Lagrange func-
tion and a partial derivative with respect to τi(q) is evaluated,
which results in the following quadratic equation:

λ(σ2
w(fq) + τi(q)(σ

2
h(fq) + νJ−1(q)))

2 = σ2
w(fq)νJ−1(q)

Since the waveform energy should be non-negative, only one
solution exists, which can be re-written as a water-filling so-
lution by using η = 1√

λ
, i.e.,

τopti (q) =

[
η
√

σ2
w(fq)νJ−1(q)− σ2

w(fq)

σ2
h(fq) + νJ−1(q)

]+
(35)

Eqns. (31) and (35) show that the FE method and the MI
method lead to similar water-filling solutions.

5. NUMERICAL RESULTS

In this section, we present the numerical simulations to show
that the adaptive waveforms in equations (31) and (35) result
in same performance in terms of convergence of error vari-
ance νJ(q). The simulation is setup as follows. The spectral
variance of the target response with nine channels (Q = 9) is
modeled by σ2

h(fq) = β1 + β2 exp−((fq − fc)/fc)
2) with

fc = f⌊Q
2 ⌋, where the values of β1 and β2 are assumed to be

0.4 and 0.6, respectively. The true value µh(q) is assumed to
be an exponential function of fq as µh(q) = a0 exp(−((fq −
fc)/fc)

2) where the peak value is a0 = 2 + 4i. The total
number of cycles is 200, the number of snapshots taken in
each cycle is L = 10. Hence, the total number of iterations
is J = 2000. At each q the target response is generated using
Gaussian statistics. The radar measurements are generated
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Fig. 2. Comparison of variance performance for adaptive vs.
non-adaptive methods

Table 1. SNR gain at each channel
Channel (q) 1 2 3 4 5 6 ∼ 9

SNR Gain (dB) 19 17 15 13 11 ≤ 2

(simulated) using the model in (4). In the non-adaptive case,
the waveform is fixed as S(fq) =

√
Es. In the adaptive case,

the waveforms are evaluated as Si(fq) =
√
τi(q) from the FE

and MI waveforms, respectively. From the measurements, the
posterior pdf of αq is sequentially evaluated by (19) and (20).
Fig. 1 shows the estimate of the magnitude of the target re-
sponse overlayed on the true values. It can be seen the estima-
tion process is successful. Also note that the channels 6 ∼ 9
do not have a significant target response in terms of SNR gain.
The SNR gain is given by SNRGJ (q) =

|Yj(fq)|2−σ2
w(fq)

τi(q)
. As

illustrated in Table 1 these channels are characterized based
on their SNR gain which is less than 5% of the maximum
SNR gain (in terms of dB, the cutoff is 19 − 13 = 6 dB).
Fig. 2 illustrates the behaviors of error variance νJ(q) using
fixed waveforms and adaptive waveforms designed by the FE
and MI methods. The plots show that the adaptive method
converges faster than the non-adaptive method as the number
of iterations J increases. The performance for the FE and MI
methods are the same.

6. CONCLUSION

In this paper, we demonstrate the use of free energy as an
unifying framework for both parameter density estimation of
a single parameter and adaptive waveform design for faster
convergence. For the problem of single parameter estimation
under the Gaussian signal model, the FE approach is same as
the Bayesian estimation. For waveform design, minimization
of free energy gives rise to a water filling solution that can be
iteratively updated. Hence, the free energy principle enables
efficient and tractable computational schemes for parameter
estimation applicable to cognitive radar system design.
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