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ABSTRACT

Intracranial pressure (ICP) is an important physiological sig-

nal for patients with traumatic brain injuries. Accurate ICP

forecasting enables active and early interventions for more

effective control of ICP levels. To achieve high accuracy,

most existing methods require a high sampling rate (100 Hz),

which is infeasible for online medical applications. There-

fore, we propose an online ICP forecasting method requir-

ing only low rate signal sampling (0.1 Hz). Our ARIMA

based forecasting method applies empirical mode decomposi-

tion (EMD) to remove non-stationarities from the ICP signal,

and robust estimation to mitigate the influence of motion in-

duced artifacts. Experimental performance assessment with

simulated and clinically collected data demonstrate that the

proposed method is more accurate compared to previously

proposed and standard methods.

Index Terms— intracranial pressure, forecasting, non-

stationarity, robustness, empirical mode decomposition

1. INTRODUCTION

A common risk for patients with traumatic brain injuries is

that the primary brain damage can lead to a secondary patho-

physiological damage, which usually occurs together with a

significantly high or low intracranial pressure (ICP). Thus, the

monitoring and prediction of ICP signals is essential. The cur-

rent practice mainly relies on manual observation and judge-

ment of nurses and clinicians, which is prone to human errors

and suffers from ineffectiveness [1]. A reliable online pre-

diction method for ICP signals is therefore sought for. The

accurate prediction of an ICP signal requires dealing with a

number of difficulties: First, the non-stationarity of ICP sig-

nals is too high to be cancelled by simple methods like time-

differencing or short-time analysis. Second, the inevitable

artifacts, which can be caused by motion of the patients or

equipment errors, contaminate the signal seriously [2]. A fur-

ther challenge arises from the fact that, up to now, no con-

vincing statistical model for ICP measurements has been es-

tablished.

Fig. 1. Ten hour excerpt of a typical ICP measurement plotted

in green. Patient motion results in inevitable measurement

artifacts which are highlighted by black crosses.

Relation to Previous Work and Original Contributions

Most existing approaches, e.g. [3, 4] are based on the analysis

of ICP data sampled at a high frequency (100Hz), and require

simultaneous acquisition of additional medical signals. This

high computational cost is inapplicable for online applica-

tions. We compare our work to [2], which also forecasts ICP

signals at a low sampling frequency (0.1 Hz). Our work has

its roots in signal decomposition [5, 6, 7] and robust statistics

for dependent data [7, 8, 9, 10, 11].

Original contributions of our paper are: (i) A complete frame-

work for robust online forecasting of ICP signals. (ii) A

statistical model for ICP measurements. (iii) A robust arti-

fact detection which combines decisions of a non-parametric

time domain artifact detector and an ARIMA model based

EMD domain detector. (iv) A computationally feasible ro-

bust ARIMA model order selection strategy. (v) An ARIMA

model based robust online forecast of ICP signals in the

EMD domain, which includes (vi) a robust updating stage to

mitigate the effects of patchy outliers.

The paper is organized as follows. Section 2 investigates the

signal characteristics and proposes a model for artifact con-

taminated ICP signals. Section 3 introduces our proposed

method for artifact removal and signal forecasting. Section 4

provides simulation results and real data experiment results.

Section 5 concludes the paper.
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Fig. 2. Overview of the proposed robust ICP signal forecasting algorithm.

2. ANALYSIS OF ICP MEASUREMENTS AND

PROPOSEDMEASUREMENT MODEL

A typical ICP measurement is shown in Fig. 1. Artifacts due

to patient motion and connection errors are clearly present.

We therefore propose the following ICP measurement model

x = s+ ν1 + ν2. (1)

Here, x is the observed measurement, s is the true ICP signal,

ν1 is Gaussian white (bio-amplifier) noise and ν2 represents

the measurement artifacts. Vectors are obtained by collecting

measurements at time instants n = 0, . . . , N − 1. Due to the

nature of ICP signals, 0 < s(n) < cs where cs is a subject

dependent constant.

To investigate stationarity, we applied the KPSS test [12]

on a large number of hand picked artifact-free ICP measure-

ment segments, and the results generally rejected the hypoth-

esis of stationarity. Then, motivated by an ARIMAmodelling

strategy, time differencing was performed. Although the dif-

ferent segments can partly pass the KPSS test, the ARIMA

model order estimates never converged, even for high ranges,

which makes direct ARIMA modelling unsuitable for ICP

signals. Extensive data analysis also showed that the station-

arity length strongly varied between measurements, making a

universal window choice for assuming local stationarity im-

possible.

The empirical mode decomposition (EMD), see [5] for

details, decomposes a non-stationary series into a set of

stationary components. The decomposed components are

called intrinsic mode functions (IMFs). Different from the

wavelet transform, the EMD requires no base wave. The non-

stationary signal s is decomposed through EMD as follows:

s =

k
∑

i=1

ci + rk (2)

This yields the extended IMF setI (s) = {c1, c2, . . . , ck, rk}
T

of dimensions (k+1)×N , where {c1, c2, . . . , ck}
T are IMFs

and rk is the residual series.

Recently, for predicting climatic data series, the authors

of [6] successfully fit ARMA models to the extracted IMF

components. ICP measurements, due to a higher grade of

remaining non-stationarity, require ARIMA models instead

of ARMA models, on each decomposed component in I (s).
Data analysis with clinically collected ICP measurements

showed that, for k ≥ 8, every extended IMF can be modelled

with an ARIMA model with an order vector (p, d, q), where
the autoregression order p ∈ [2, 20], the integration order

d ∈ [0, 2] and the moving average order q ∈ [0, 20].

3. PROPOSEDMETHOD FOR ROBUST ICP SIGNAL

FORECASTING

An overview of our method is given in Fig. 2. The following

section describes the stages of our algorithm in detail.

3.1. Robust Artifact Detection and Signal Reconstruction

Assuming that a K-sample-long ICP data block x is read,

we suggest to detect motion artifacts as outliers through the

fusion of two detectors, see Fig. 2. This in general leads

to better results than applying any of the individual methods

separately.

Artifact Detector 1: Time Domain Median Filter

Let x be filtered with an ith-order vector median filter with

output x̃. In practice, we empirically set i = K/2. Defining
e1 = x−x̃, a common outlier detection rule is the 3σ rule [8].

Any measurement x(n) for which |e1(n)| > 3σ̂e1 , where σ̂e1

is the normalized median absolute deviation (NMAD) of e1,

is labelled as an outlier resulting in the label vector of outliers

ξ1.

Artifact Detector 2: EMD Domain ARIMA Robust Filter

As stated in [2], the motion artifacts in an ICP measurement

sequence are significantly observable in the IMFs. This po-

tentials an outlier detection in the EMD domain by using the

model described in Eqs. (1) and (2) and applying the follow-

ing steps:

1. Decompose x into its extended IMF set I (x).

2. For every row in I (x), robustly estimate its ARIMA

model order (p, d, q) (see Section 3.3), extract the cor-

responding ARMA (p̂, q̂) process, and filter it with a
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robust filter cleaner [8, 11]. Reconstruct the ARIMA

process from the filtered ARMA process and subtract it

from the original IMF, to obtain the vector of residuals

ǫi and corresponding robust scale estimate σ̂i, where i
corresponds to the row index of I (x).

3. Use the overall residual vector e2 =
∑k

i=1
ǫi, and the

overall residual scale σ̂e2 =
∑k

i=1
σ̂i to detect artifacts

analoguously as described for detector 1, resulting in

the outlier label vector ξ2.

The overall label vector of outliers ξout is obtained by the ’or’
fusion of ξ1 and ξ2.

Signal Reconstruction

By use of ξout, x̃ from artifact detector 1 can be used for signal

reconstruction:

ŝR(n) =

{

x(n) ξout(n) = 0

x̃(n) ξout(n) = 1

Collecting the time instants into a vector yields ŝR, the artifact

cleaned ICP signal, see Fig. 2.

3.2. Proposed Forecasting Approach

Assuming perfect artifact removal, classical forecastingmeth-

ods, e.g. the Kalman filter can be applied. In case of imperfect

reconstruction, we suggest either to use a robust Kalman filter

[8, 13], or to:

1. Decompose ŝR with EMD into its extended IMF set

I (̂sR).

2. For every component in I (̂sR), robustly estimate its

ARIMA model, to obtain a robust ARIMA forecast,

e.g. with the median of ratios estimator [9].

3. Sum all forecast components up to obtain the overall

forecast signal ŝF,curr.

Robust Updating for Patchy Outlier Mitigation

For ICP measurements, the common concept of i.i.d. outliers

is not applicable. In fact, artifacts create bursts of outliers,

so called patchy outliers [8, 11], which appear due to non-

uniform patient motion. Clearly, the forecasts based on some

data blocks will be much worse than others, even when us-

ing robust methods. To deal with this, we suggest to save the

current forecast in a buffer (see Fig. 2), therewith allowing

for forecasts ŝF,curr and ŝF,curr-D, which overlap on an inter-

val of length D. We next assess the forecasting quality in

the spirit of John W. Tukey’s comment [14] that robust and

non-robust methods significantly differ, only when outliers

are present. Therefore, we compute (non-robust) sample stan-

dard deviations of ŝF,curr and ŝF,curr-D onD and compare them

to a robustly estimated scale of measurements x(n) for which
ξout(n) = 0. The final forecast ŝF (see Fig. 2) is then ob-

tained by the prediction whose standard deviation is closer to

robust scale estimate.

3.3. Fast Robust ARIMA Model Order Selection

In presence of outliers, classical model order selection criteria

break down and robust methods (see e.g. [15, 16] and refer-

ences therein) have been proposed. For artifact detector 2 and

for the forecast stage (see Figure 2), the ARIMA model order

(p, d, q) must be estimated for every extended IMF compo-

nent. Approximate model order selection based on the decay

of the auto-covariance function (ACF) and the partial auto-

covariance function (PACF) [17] is widely used, because of

its low computational complexity. Here, we adapt this method

by robustifying the estimators of the ACF and the PACF due

to the artifacts. We suggest to use the robust and computa-

tionally simple median of ratios estimator for the ACF whose

robustness properties are discussed in [9]. The PACF then

can be estimated with the help of the estimated ACF through

a Levinson-Durbin recursion.

4. RESULTS

In this section, the effectiveness of the proposed method is

experimentally evaluated through both simulated and real ICP

signals.

4.1. Simulations and Performance Evaluation

Due to the absence of a ground truth synthetic statistical

model for ICP signals, it is impossible to simulate an ICP

signal perfectly. Here, we adapt two different motion models,

i.e. the random walk model and the velocity sensor model

to approximate the stable and unstable ICP signals, and to

account for inaccuracy of our suggested ICP signal model.

Patchy artifacts are generated by expanding isolated artificial

pulses with MA filters, as described in [7]. Simulation param-

eters are as follows. Sampling frequency fs = 0.1Hz; sample

length N = 2500; random walk noise deviation σrw = 0.1;
initial signal value s(0) = 25mmHg; ν1(n) ∼ N (0, 1);
for ν2(n): prob(ν2(n) 6= 0) = 0.01 and maximum patch

duration and amplitude are modelled by uniform distributions

with empirically set parameters; forecast horizon = training

length = 360;D = 90.
To evaluate the performance, the following three metrics

are defined: (i) The outlier detection accuracy (ODA):

ODA = 1− 0.05pFA − 0.95pMD,

where pFA is the false alarm rate and pMD is the missed detec-

tion rate. (ii) The mean signal reconstruction error (MSRE):

MSRE =
1

N

N−1
∑

n=0

∣

∣

∣

∣

ŝR(n)− s(n)

s(n)

∣

∣

∣

∣

,
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and (iii) the 10-percent gross prediction error rate (GPER):

GPER =
1

N
♯{n |

∣

∣

∣

∣

ŝF (n)− s(n)

s(n)

∣

∣

∣

∣

> 0.1},

where ♯{·} denotes the number of elements in a set. Aver-

age results based on 100 Monte Carlo runs, are shown in Ta-

bles 4.1 and 4.1. Here, NN stands for the neural networks

based method described in [2], KF ARIMA represents our

method using a Kalman filter forecasting (assuming perfect

artifact removal, see Section 3.2), and ROB ARIMA denotes

our method using robust ARIMA forecasting. Both our meth-

ods use the suggested robust updating, which in general low-

ered the GPER (best GPER without: ROB ARIMA 9.20% for

random walk, ROB ARIMA 8.54% for velocity sensor).

ODA MSRE GPER

NN 99.61% 3.34% 100%

KF ARIMA 99.58% 3.13% 11.35%

ROB ARIMA 99.58% 3.13% 3.53%

Table 1. Averaged evaluationmetrics based on simulated data

using the random walk model.

ODA MSRE GPER

NN 99.67% 3.43% 100%

KF ARIMA 99.62% 3.22% 13.28%

ROB ARIMA 99.62% 3.22% 4.19%

Table 2. Averaged evaluationmetrics based on simulated data

using the velocity sensor model with additive outliers.

4.2. Real Data Experiment Results

To validate real data suitability, online forecasting is applied

to clinically collected ICP measurements. Due to the lack of

a ground truth for the ICP signal, it is impossible to compute

the evaluation metrics. However, a qualitative evaluation can

be made through visual inspection. Examples are shown in

Fig. 3.

5. CONCLUSIONS

An online approach for robust ICP signal forecasting was pre-

sented. Simulations results show good performance, i.e. a

GPER below 5% in situations where the approach by [2] fails.

Visual inspection of clinically measured ICP signals indicates

stable performance, even in seriously contaminated data sets.
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Real Data Example 1

Real Data Example 2

Real Data Example 3

Fig. 3. Online forecast results for three different subjects for

a time-span of 33 hours and 20 minutes. The raw measure-

ments are plotted in green, while the three online forecasts

are depicted in black. Real Data Example 1 is a measurement

with a small amount of artifacts, while Real Data Examples 2

and 3 are highly contaminated. The third example has been

chosen, to illustrate forecast performance for quickly varying

ICP levels. In all cases, subjective visual inspection suggests

that the proposed methods render more stable and accurate

forecasts compared to the existing method based on neural

networks. The robust ARIMA forecast provides best results

and resists outliers caused by motion artifacts even in these

difficult situations.
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