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ABSTRACT

This work presents a variation of canonical correlation anal-
ysis (CCA), where the correlation coefficient between the
instantaneous power of the projections is maximized, rather
than between the projections themselves. The resulting op-
timization problem is not convex, and we have to resort to a
sub-optimal approach. Concretely, we propose a two-step so-
lution consisting of the singular value decomposition (SVD)
of a “coherence” matrix followed by a rank-one matrix ap-
proximation. This technique is applied to blindly recovering
signals in a model that is motivated by the study of neuronal
dynamics in humans using electroencephalography (EEG)
and magnetoencephalography (MEG). A distinctive feature
of this model is that it allows recovery of amplitude-amplitude
coupling between neuronal processes.

Index Terms— Bi-quadratic optimization, canonical
correlation analysis (CCA), neuronal dynamics, electroen-
cephalography (EEG), magnetoencephalography (MEG)

1. INTRODUCTION

In this paper, we develop a variation of canonical correlation
analysis (CCA), called “Power-CCA.” This technique is ap-
plied to blindly recovering, from two different linear mix-
tures, two sets of signals whose amplitudes are correlated.
Such a setup is motivated by the study of neuronal dynam-
ics in humans using electroencephalography (EEG) and mag-
netoencephalography (MEG). Conventionally, neuronal inter-
actions are studied assuming phase synchronization between
processes in the same frequency range [1, 2]. Recently, how-
ever, neuronal interactions have also been shown to occur at
different frequency ranges (so-called cross-frequency inter-
actions). These interactions include phase-phase, amplitude-
phase and amplitude-amplitude coupling between the neu-
ronal processes, which do not have the same frequency [3].

A majority of previous neuroimaging studies on cross-
frequency interactions was based on an analysis in sensor
space [3–6]. However, this approach has the disadvantage
that source-mixing due to volume conduction can strongly
obscure true topographic relationships between the interact-
ing systems. Since EEG and MEG recordings are usually
based on multichannel setups, an alternative approach is to
find spatial filters that maximize the desired type of interac-
tions. Previously such a decomposition has been introduced
for studying phase-phase cross-frequency interactions [7]. In
the present study, we introduce a novel multivariate decompo-
sition technique for extracting neuronal components that ex-
hibit amplitude-amplitude interactions between neuronal pro-
cesses with different frequencies. To the best of our knowl-
edge, this problem has never been considered in the literature.

Our technique is similar to canonical correlation analy-
sis (CCA) [8]. The objective of CCA is to maximize the
correlation coefficient between the projections (linear com-
binations) of two sets of variables. However, when look-
ing for amplitude-amplitude correlation, CCA fails dramati-
cally. We present Power-CCA, where the objective is to max-
imize the correlation coefficient between the instantaneous
powers of the projections, rather than between the projec-
tions themselves. Since this leads to a non-convex optimiza-
tion problem, we propose a sub-optimal solution. Its per-
formance is illustrated using simulations that model oscil-
latory neuronal processes and amplitude-amplitude synchro-
nization/correlation between them.

2. PROBLEM FORMULATION

The problem in neuroimaging that we are interested in can be
described by the following simple model

x[n] = Au[n] + nx[n]

y[n] = Bv[n] + ny[n],
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where A ∈ RLx×Lu and B ∈ RLy×Lv are two fixed, but un-
known, mixing matrices, assumed to have full rank, u[n] =
[u1[n], . . . , uLu

[n]] and v[n] = [v1[n], . . . , vLv
[n]] are two

sets of discrete-time signals, which contain the signals of in-
terest, and nx[n] ∈ RLx and ny[n] ∈ RLy are zero-mean
additive noises with unknown covariance matrices, uncorre-
lated with the signals. We assume Lx ≥ Lu and Ly ≥ Lv .

The distinctive feature of this setup is that there is a
strong linear coupling (i.e., high correlation) between some
of the amplitudes of {ui[n]}Lu

i=1 and some of the amplitudes
of {vi[n]}Lv

i=1. These amplitudes are defined as the absolute
value of the corresponding analytic signals

u+
i [n] = ui[n] + jH{ui[n]}, i = 1, . . . , Lu,

v+
i [n] = vi[n] + jH{vi[n]}, i = 1, . . . , Lv,

where H{·} denotes the discrete-time Hilbert transform. In
order to measure the strength of the linear coupling between
the amplitudes |u+

i [n]| and |v+
i [n]|, we define the correlation

coefficient
ρ|u+

i |,|v
+
i |

=
σ|u+

i |,|v
+
i |

σ|u+
i |
σ|v+i |

,

where the cross-covariance is

σ|u+
i |,|v

+
i |

= E
[∣∣u+

i [n]
∣∣ ∣∣v+

i [n]
∣∣]− E [∣∣u+

i [n]
∣∣]E [∣∣v+

i [n]
∣∣]

and the variances are

σ2
|u+

i |
= E

[∣∣u+
i [n]

∣∣2]− E2
[∣∣u+

i [n]
∣∣]

and
σ2
|v+i |

= E
[∣∣v+

i [n]
∣∣2]− E2

[∣∣v+
i [n]

∣∣] .
In our setup, we ignore any temporal correlation that the

signals may or may not have. Thus, we will drop the time
index for notational convenience. We further assume that the
amplitudes {|u+

i |} are pairwise uncorrelated, the amplitudes
{|v+

i |} are pairwise uncorrelated, and |u+
i | and |v+

j | are un-
correlated for i 6= j. However, the first P ≤ min(Lu, Lv)
amplitude pairs |u+

i | and |v+
i | are correlated, i.e., the corre-

lation coefficient ρ|u+
i |,|v

+
i |

is nonzero for the first P pairs
of |u+

i | and |v+
i |. We would like to utilize this amplitude-

amplitude correlation in order to recover the signals ui and
vi, i = 1, ..., P , from the observed mixtures x and y. Without
loss of generality, we will assume that the signal pairs are or-
dered such that u1 and v1 are the most strongly correlated, u2

and v2 the second most strongly correlated, and so on. With
this setup, one might think that any blind source separation
technique would give us u[n] and v[n]. However, this does
not work for two reasons:

1. It would not tell us which signal ui[n] correlates with
which signal vj [n].

2. It would fail if the signals are Gaussian.

3. POWER-CCA

Consider the analytic versions of the observed mixtures,
which we will simply denote by x and y, dropping the super-
script + for notational convenience. In order to find the first
pair of signals, we need to determine linear transformations
wx and wy such that the correlation coefficient between the
magnitudes of the projections ξx = wH

x x and ξy = wH
y y is

maximized:
maximize

wx,wy

ρ|ξx|,|ξy|. (1)

This problem is reminiscent of canonical correlation analysis
(CCA), where we would solve

maximize
wx,wy

ρξx,ξy .

Nevertheless, solving (1) seems very difficult. As an easier al-
ternative, we propose to maximize the correlation coefficient
between the instantaneous power instead, that is,

maximize
wx,wy

ρ|ξx|2,|ξy|2 = maximize
wx,wy

σ|ξx|2,|ξy|2

σ|ξx|2σ|ξy|2
,

where σ|ξx|2|ξy|2 is the cross-covariance between the power
of the projections, and σ2

|ξx|2 and σ2
|ξy|2 are the variances. We

call this setup “Power-CCA.”
Like in the original CCA problem, the directions may be

found as the solution to the following optimization problem

maximize
wx,wy

σ|ξx|2,|ξy|2 , (2)

subject to σ2
|ξx|2 = 1,

σ2
|ξy|2 = 1.

The cross-covariance is given by

σ|ξx|2,|ξy|2 = E
[
|ξx|2|ξy|2

]
− E

[
|ξx|2

]
E
[
|ξy|2

]
= E

[
|ξx|2|ξy|2

]
−
(
wH
x Rxxwx

) (
wH
y Ryywy

)
,

where Rxx and Ryy are the cross-covariance matrices of x
and y, respectively, and the cross-correlation E

[
|ξx|2|ξy|2

]
may be expressed as

E
[
|ξx|2|ξy|2

]
= E

[(
wH
x x
) (

wH
x x
)∗ (

wH
y y
) (

wH
y y
)∗]

= w̄H
x R̄xyw̄y.

In this equation, R̄xy = E[(x⊗ x∗) (y ⊗ y∗)
H

], w̄x =
wx ⊗w∗x, w̄y = wy ⊗w∗y , where ⊗ denotes the Kronecker
product. We may thus rewrite (2) as

maximize
w̄x,w̄y,wx,wy

w̄H
x C̄xyw̄y, (3)

subject to w̄H
x C̄xxw̄x = 1,

w̄H
y C̄yyw̄y = 1,

w̄x = wx ⊗w∗x,

w̄y = wy ⊗w∗y,
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where C̄xy = R̄xy − r∗xxr
T
yy , C̄xx = R̄xx − r∗xxr

T
xx, with

R̄xx = E[(x⊗ x∗) (x⊗ x∗)
H

] and rxx = vec (Rxx). The
terms C̄yy, R̄yy and ryy are defined analogously.

In the optimization problem (3), we maximize a bi-
quadratic objective function subject to quartic constraints.
Similar optimization problems have been previously consid-
ered by [9–12]. The problem (3) is not convex due to the
Kronecker structure of w̄x and w̄y . However, we may con-
vexify it by dropping the Kronecker constraint, which then
yields a sub-optimal solution. Doing so, the optimization
problem is now equivalent to that of CCA [13], and its solu-
tion is given by the whitened singular vectors of the coherence
matrix Q̄xy = C̄

−1/2
xx C̄xyC̄

−1/2
yy . That is, w̄x = C̄

−1/2
xx u

and w̄y = C̄
−1/2
yy v, where u and v are the left and right

principal singular vectors of Q̄xy .
Given the unconstrained solution, the Kronecker structure

may be imposed by vec
(
w∗xw

T
x

)
= wx ⊗w∗x. Defining the

matrices W̄x = unvec(w̄x) and W̄y = unvec(w̄y), and their
principal left singular vectors sx and sy , the approximate so-
lution to the problem is therefore

wx = s∗x, wy = s∗y.

If the matrices W̄x and W̄y were already rank-one, this so-
lution would be optimal. By comparing the largest singular
value of W̄x (and W̄y) with the remaining singular values,
we may therefore check how close the sub-optimal solution is
to the optimal solution.

As with CCA, further projections can be obtained subject
to the constraint that these be uncorrelated with previously
obtained projections:

σ|ξ(i)x |2|ξ(j)x |2
= 0, σ|ξ(i)y |2|ξ(j)y |2

= 0,

σ|ξ(i)x |2|ξ(j)y |2
= 0, σ|ξ(i)y |2|ξ(j)x |2

= 0,

for j = 1, . . . , i− 1. This results in the optimization problem

maximize
w̄

(i)
x ,w̄

(i)
y ,w

(i)
x ,w

(i)
y

w̄(i)H
x C̄xyw̄

(i)
y , (4)

subject to w̄(i)H
x C̄xxw̄

(i)
x = 1,

w̄(i)H
y C̄yyw̄

(i)
y = 1,

w̄(i)H
x C̄xxw̄

(j)
x = 0, j = 1, . . . , i− 1,

w̄(i)H
x C̄xyw̄

(j)
y = 0, j = 1, . . . , i− 1,

w̄(i)H
y C̄yyw̄

(j)
y = 0, j = 1, . . . , i− 1,

w̄(i)H
y C̄H

xyw̄
(j)
x = 0, j = 1, . . . , i− 1,

w̄(j)
x = w(j)

x ⊗w(j)∗
x , j = 1, . . . , i,

w̄(j)
y = w(j)

y ⊗w(j)∗
y , j = 1, . . . , i.

Again, dropping the Kronecker structure constraint, the solu-
tion to the problem (4) is given by the ith left and right prin-
cipal singular vectors of Q̄xy , and the Kronecker structure
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Fig. 1: Results for length N = 1000

may be imposed retrospectively using the same procedure as
above.

Given the projections, the analytic versions of the signals
of interest may now be recovered as

û+
i [n] = [w(i)

x ]Hx[n], v̂+
i [n] = [w(i)

y ]Hy[n],

and the corresponding real signals are therefore

ûi[n] = Re{[w(i)
x ]Hx[n]}, v̂i[n] = Re{[w(i)

y ]Hy[n]}.

Note that we can recover the analytic signals only up to an un-
known complex number, which is typically the case in blind
source separation.

4. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
technique using Monte Carlo simulations. In particular, we
obtain the mean square error (MSE) and its standard devia-
tion. Since we cannot recover the phase and amplitude of the
analytic signals, we define the mean square error as

MSEu (dB) = 10 log

(
1

N

N∑
n=1

E
[
|ui[n]− αûi[n]|2

])
,

where α minimizes the error between u+
i [n] and û+

i [n] and
N denotes the length of the signals. The MSE of the second
set is defined analogously by replacing u with v.

The first set of signals is made up of four independent
bandpass Gaussian signals, centered at 10 Hz and sampled at
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Fig. 2: Results for length N = 10000

100 Hz, and a fifth signal that is white Gaussian noise. The
second set of signals consists of four independent bandpass
Gaussian signals, centered at 25 Hz and sampled at 100 Hz,
and a fifth signal that is white noise. So Lu = Lv = 5.
The first two signal pairs in these two sets have an identical
envelope, i.e., they have perfect amplitude-amplitude correla-
tion, so P = 2. Both signal sets are mixed by square mixing
matrices (Lx = Ly = 5), whose elements are independent
and identically distributed and drawn from a Rayleigh dis-
tribution. Nothing is assumed known in these experiments,
and the covariance matrices and other moments are estimated
from the signals.

Figure 1 shows the MSE and corresponding standard de-
viation vs. the signal-to-noise ratio (SNR) for signal length
N = 1000. We observe that the performance of recovering
the first signal u1 is slightly better than that of recovering u2.
This may be explained by the fact that the two projections are
not completely uncorrelated due to dropping the Kronecker
constraints. Figure 2 shows results for the same setup, but
with a longer signal of length N = 10000. As expected, this
improves performance because the sample covariance matri-
ces are then a better estimate of the true covariance matrices.
We should point out that the results of CCA are not shown
because CCA completely fails to recover the signals. Finally,
one comment is in order. In a typical EEG or MEG setup, the
length of the recorded signals may even be up to 20 minutes.
Sampled at 100 Hz, this yields up to N = 120000 samples,
which significantly improves performance.

Finally, Figure 3 shows the distribution of the ratio be-
tween the largest eigenvalue and the trace of W̄x for the first
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Fig. 3: Ratio between the largest singular value and the sum
of all singular values for the first solution (SNR = 30 dB and
N = 10000)

solution, where the SNR is 30 dB, N = 10000 samples, and
the number of realization is 10000. As can be seen, most of
the times this ratio is almost one, which implies that our sub-
optimal approach is close to the optimal solution.

5. CONCLUSIONS

In this work, we have considered the problem of recovering,
from two different linear mixtures, two sets of signals whose
amplitudes are correlated. Our approach is closely related to
canonical correlation analysis, but instead of maximizing the
correlation coefficient between the projections, we maximize
the correlation coefficient between their instantaneous pow-
ers. We have presented some simulations that model oscil-
latory neuronal processes and amplitude-amplitude synchro-
nization/correlation between them. In this conference publi-
cation, we have focussed on the mathematical derivation. In a
forthcoming journal publication, we will apply our technique
to real EEG or MEG data.
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