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Abstract—The traditional Heisenberg-Weyl measure quantifies
the joint localization, uncertainty, or concentration of a signal in
the phase plane based on a product of energies expressed as signal
variances in time and in frequency. Unlike the Heisenberg-Weyl
measure, the Hirschman notion of joint uncertainty is based on
the entropy rather than the energy [1]. Furthermore, as we noted
in [2], the Hirschman optimal transform (HOT) is superior to the
discrete Fourier transform (DFT) and discrete cosine transform
(DCT) in terms of its ability to resolve two limiting cases of
localization in frequency, viz pure tones and additive white noise.
We found in [3] that the HOT has a superior resolution to the
DFT when two pure tones are close in frequency. In this paper,
we improve on that method to present a more complete spectral
analysis tool. Here, we implement a stationary spectral estimation
method using compressive sensing (in particular, Iterative Hard
Thresholding) on HOT filterbanks. We compare its frequency
resolution to that of a DFT filterbank using compressive sensing.
In particular, we compare the performance of the HF with that of
the DFT in resolving two close frequency components in additive
white Gaussian noise (AWGN). We find the HF method to be
superior to the DFT method in frequency estimation, and ascribe
the difference to the HOT’s relationship to entropy.

Index Terms—Hirschman Optimal Transform, Orthogonal
Matching Pursuits, Periodogram, Quinn’s method

1. INTRODUCTION

WE introduced an entropy-based measure Up [4] that
quantifies the compactness of a discrete-time signal in

the sample-frequency phase plane. Use of an entropy-based
measure allowed us to overcome the limitations inherent to
discretizing the Heisenberg uncertainty. Our entropy-based
measure was used to show that discretized Gaussian pulses
may not be the most compact basis with respect to joint time-
frequency resolution. In [1], we found a basis (HOT transform)
that is orthonormal and uniquely minimizes the discrete-time,
discrete-frequency Hirschman uncertainty principle. For com-
parison, we considered a discretized Gaussian pulse, which is
comparable to the HOT basis. We found the uncertainty Uρ
realized by the discretized Gaussian pulse is greater than that
of the HOT basis functions [2].

The question we ask is: Can this improved localization of
the HOT be used to improve spectral estimation techniques?
Using the HOT and DFT, we examine the power spectrum
experimentally, and compare the performance of our developed
HOT-DFT periodogram to that of the classical periodogram

using the DFT. Our experiment is to distinguish two closely-
spaced frequency components with different amplitude ratios
embedded in AWGN. The composite signal passes through
the filter banks, then we reconstruct the selected channel
signals using an energy criterion and apply the compressive
sensing, i.e. Iterative Hard Thresholding algorithm, before
applying classical Quinn’s smoothing kernel [5] to get the
power spectrum. We observe that, after thresholding, the HOT-
DFT estimated spectrum is superior to the DFT when the
signal-to-noise ratio (SNR) is as low as 0 dB.

In this paper, we briefly review the HOT, then we develop an
filter bank method and apply the Iterative Hard Thresholding
algorithm to estimate the power spectrum of a signal with the
use of Quinn’s method, where the channels of the filter bank
are derived using both the HOT and the DFT. We carefully
derive these filter banks, because they show the utility of the
entropy-based spectral estimation method.

2. THE HIRSCHMAN OPTIMAL TRANSFORM

In this section, we consider discrete 1–D signals on a
finite domain. Fix a finite set of non negative integers
D = 0, 1, 2. . . , N − 1. Let HN denote the Hilbert space of
sequences x : D → C with squared-norm

‖x‖22 =

N−1∑
n=0

|x [n]|2 (1)

Using the twiddle factor notation WN = e−j(2π/N), the DFT
is

X [k] = Fx [n] =
1√
N

N−1∑
n=0

x [n]Wnk
N , k ∈ D (2)

This defines an isometry on HN with inverse given by

x [n] =
1√
N

N−1∑
k=0

X [k]W−nkN (3)

By the digital phase plane, we mean the set of all points
(n, k) ∈ D ×D. The translation and modulation operators (see
[2] for details) allow us to view the entire digital phase plane.
The uncertainty measure we use is based on entropy instead of
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energy. Consider the following definition: For x ∈ HN with
‖x‖2 = 1, the (Shannon) entropy is defined as

S(x) = −
N−1∑
n=0

|x [n]|2 ln
(
|x [n]|2

)
(4)

This entropy is defined on the pseudo-density determined from
the normalized-energy signal, and not from any statistical
definition. Using this entropy, we define a general class of
digital uncertainty measures for 0 ≤ ρ ≤ 1:

Uρ(x) = ρS(x) + (1− ρ)S(Fx), x ∈ HN , ‖x‖2 = 1. (5)

In the special case where ρ = 1
2 , the measure (5) is called the

digital Hirschman uncertainty [2]. In general, ρ allows for a
tradeoff between concentration in time and in frequency. In
the extreme where ρ = 1, the measure (5) ignores frequency
localization, and the minimizing signals are those concentrated
at single points. Similarly, if ρ = 0, the minimizing signals are
those for which all the sample magnitudes |x (n)| are equal.
Intermediate values of ρ give a weighted measure of joint
time-frequency localization of the signal. Before describing
the minimizers of (5), we define periodization:

Definition 1. For N = KL, the periodization of v ∈ Ck is
defined as x [sK + n] = (1/

√
L)v [n] for 0 ≤ s ≤ L− 1 and

0 ≤ n ≤ K − 1. We refer to the sequence v ∈ Ck given
by v [0] = 1, v [1] = 0, · · · v [K − 1] = 0, as the Kronecker
delta or impulse (unit sample) sequence, without specifying
the signal length K. We proved the following theorem in [1]:

Theorem 2. The only sequences x ∈ Ck, with ‖x‖2 = 1 ,
for which U 1

2
(x) is minimal are obtained from the Kronecker

delta sequence by applying any composition of periodization,
translation, modulation, the DFT, and multiplication by a
complex number of unit magnitude.

3. HOT/DFT SPECTRAL ESTIMATION USING FILTER
BANK

We use the K-dimensional DFT kernel as the originator
signals for our N = K2-length HOT basis. Each of these basis
functions must then be shifted and up-sampled to produce the
sufficient number of orthogonal basis functions that define the
HOT. While other choices are possible, this one leads to an
efficient computational structure with a complexity less than
that of the N -point DFT. Note that the DFT kernel could
also be used in a similar manner to produce transforms for
other factorizations N = KL,K 6= L, but these possess
an uncertainty Hp that varies as a function of p and are
suboptimal in this sense [1].

The HOT is unitary to a scale, and so the inverse transform
results by taking the conjugate transpose and scaling by

√
K.

In general [1]:

H [Kr + l] =
1√
K

K−1∑
n=0

x [Kn+ l] e−j
2π
K nr,0 ≤ r, l ≤ K−1.

(6)
and its inverse

x [Kn+ l] =
1√
K

K−1∑
r=0

H [Kr + l] ej
2π
K nr,0 ≤ n, l ≤ K − 1.

(7)
Note that while similar, the HOT and DFT are different. The
N -point HOT is computationally more efficient than the N -
point DFT – its complexity is equivalent to that of a

√
N -point

DFT – and increasingly more efficient as N →∞.
Next we will show how we set up DFT and HOT filter

bank frame. Let F be the DFT filter bank of complex
FIR filters, and denote F−1 ≡ IF . The HOT filterbank is
similarly constructed. Note that the HOT is built using the K-
dimensional DFT kernel, where N = K2. Denote H−1 ≡ IH .
We build a HOT filter bank which is called FIH by applying
F on the IH . Since F , IH and H are unitary, FIH will
be unitary. We have two operators F and FIH . To compare
their performance, we combine F and FIH to form the hybrid
matrix HF = [FIH; F ]. Let the signal pass through the HF
and F filter banks, respectively.

4. COMPRESSIVE SENSING ALGORITHM

Compressive Sensing (CS) is an efficient acquisition frame-
work for signals x ∈ CN which are s-sparse in a known or-
thonormal basis matrix Ψ ∈ CN×N . We write x = Ψθ, where
only s � N out of N signal coefficients θ are nonzero. The
CS observation vector y is given by y = Φx, where Φ is an
M ×N measurement matrix. So the number of measurements
required to ensure that y retains all of the information in x
is M = O (s log (N/s)) [6], [7], [8]. Furthermore, x can be
recovered from its compressive measurements y via a convex
optimization or some other iterative method.

The compressed sensing observation vector y is given by

y = Φx = (ΦΨ) θ , Aθ

Here we define A = ΦΨ0 ∈ CM×N as the compressive
sensing measurement matrix with respect to θ. Since A has
reduced dimension, many vectors x′ exist which may yield
the same y. However, if A satisfies the Restricted Isometry
Property (RIP) [6], the s-sparse signals can be found by
standard sparse approximation algorithms.

Definition 3. The s−restricted isometry constant for matrix
A, denoted by δs, is the smallest non negative number such
that, for all θ ∈ RN with ‖θ‖0 = s,

(1− δs) ‖θ‖22 ≤ ‖Aθ‖22 ≤ (1 + δs) ‖θ‖22

Matrix A is called RIP if δs < 1; using i.i.d. Gaussian or
Bernoulli entries ensures A is RIP.

Iterative methods such as the iterative hard thresholding
(IHT) algorithm [9] are simple to implement and works well
in the presence of noise on compressible signals. Thus, we
choose the IHT algorithm to recover our compressible signal
(s = 2) in this paper. The `0 regularized optimization problem
is defined as follows: for given x and A , find coefficients θ
minimizing the cost function:
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C`0 (θ) = ‖x−Aθ‖22 + λ ‖θ‖0
where ‖θ‖0 is defined as the number of non-zero coefficients.
To minimize the cost function, IHT is derived in [10]:

θi+1 = Hs

(
θi +AT (x−Aθi)

)
where θ0 = 0, and Hs (a) is the non-linear operator that sets
all but the largest (in magnitude) s elements of a to zero.
If there is no unique such set, a set can be selected either
randomly or based on a predefined ordering of the elements.
The IHT algorithm will perfectly recover s−sparse signals
when δ3s ≤ 1/

√
32.

As mentioned in Section 3, the compressive sensing theory
can extend to noisy signals (or compressible signals) that are
not exactly sparse but can be approximated as sparse signals.
The sorted coefficients θ decay according to the power law:
|θ [i]| = C i−1/p for some p ≤ 1 [11]. Our signals are power
spectrum coefficients obtained from the reconstructed channel
signals derived from the filter banks.

We need to note that there is a “mismatch” between the
assumed basis for sparsity and actual the basis in which the
θ is sparse[12]. The DFT coefficients will be sparse only
when sinusoids in x have integral frequencies of the form
2πn/N , where n is an integer. Otherwise the DFT coefficients
will be compressible (less sparse) because of the spectral
leakage introduced by windowing. It is intuitive to employ
a redundant DFT frame to reduce the leakage caused by non-
integral frequencies. However, standard sparse approximation
algorithms for x in redundant DFT frames do not perform
well when the redundancy factor (c ∈ N ) increases even
though the frequency sampling interval decreases from 2π/N
to 2π/(cN). The reason is the coherence between the frame
vectors becomes high for large values of c and the performance
of CS deteriorates. In this paper, we mainly focus on the per-
formance comparison between HF and DFT. The redundancy
factor does not change the relative performance much. So, we
set c = 1 for computational convenience. The coherence of
frame Ψ is defined as:

µ (Ψ) = arg max
1≤i,j≤N

|〈ψi, ψj〉|

where ψi denotes the ith column of Ψ. The problem we target
in this paper is to resolve two close frequency components. To
observe the effect of the HOT, we push the frequency distance
limit even smaller, so the coherence value in this case will be
higher than 1, while in [13], the authors focus on coherence
inhibited structured sparse estimation.

5. CLASSIC QUINN’S METHOD

Quinn studied the power spectrum problem with DFT in
1990’s [5]. He started from ARMA(p, q) model, where p and
q are order of the AR (Autoregressive) part and MA (Moving
Average) part respectively:

p∑
m=0

amx [n−m] =

q∑
m=0

bmν [n−m] (8)

an and bn are parameters of the model, x [n] is time series data,
n ∈ [0, N − 1], and ν [n] is the white noise with zero mean
and finite variance. For signal with frequencies ωk ∈ (0, π):

x [n] =

p∑
k=1

ρk cos (ωkn+ φk) + ν [n] (9)

where ρk are the amplitude of the kth sinusoidal signal and
φk are the corresponding initial phase.

A special ARMA(2p, 2q) annihilates all the sinusoidal com-
ponents in x [m], if the parameters am = bm = βm, and
satisfy:

2p∑
m=0

βmz
m =

p∏
m=1

(
1− 2z cosωm + z2

)
The parameters β need to satisfy:

β2p−m = βm(m = 0, . . . , p− 1), β0 = 1

For example, set one sinusoidal signal x [n] =
ρ cos (ωn+ φ)+ν [n], it can be annihilated by ARMA (2, 2).
From this special ARMA model, Quinn derived the so called
smoothed periodogram:

κN (ω) =

∫ π

−π
Px(λ)µN (ω − λ)dλ (10)

where Px(λ) is the periodogram of x [n], µN (ω) =∑N−1
k=1 k

−1 cos(kω) is the kernel or we can say window
function. The smoothed periodogram is the convolution of
Px(λ) and the kernel. The key point of Quinn’s method is:
κN (ω) in Eq. (10) can give the accurate frequency estimation
without much more zero padding.

6. SIMULATIONS

We consider two signals, x1 [n] = A1 cos [2πf1/fsn+ φ1]
and x2 [n] = A2 cos [2πf2/fsn+ φ2], where φ1 and φ2 are the
initial phases (we set both to zero). The length of the signal,
No, is set to 256. The sampling frequency is fs = 1000 Hz.
The signal to be estimated is x [n] = x1 [n] + x2 [n] + v [n] ,
where v [n] is ZMWG noise. In our simulations, the input
signal x [n] is normalized to unit energy. Our results are based
on t = 100 different noise realizations. The length of the
HF and DFT filter bank is L = 64, so the HF has 128
different channels while the DFT filterbank has 64 channels.
The signal length increases to N = N0 + L − 1 in the
filtering. During the compressive sensing step, for safety, the
number of measurements is 32 (>M = O (s log (N/s)) ≈ 25)
. The maximum number of iterations is 10. If more channels
are selected, more noises are added, which will deteriorate
the performance. For each reconstruction by IHT, we ap-
ply Quinn’s method followed by a peak picking process to
estimate the frequencies f1 and f2. Both filterbanks have
poor resolution when less than 4 channels are used. When
using 7 channels with SNR = 10 dB, and the amplitude
ratio AR = log10 (A1/A2) = −0.1, the minimum frequency
interval (i.e. the Bin Width) is 4 = fs/N = 3.13 Hz. Since
we are using f1 = 194Hz and f2 = 20.24Hz, the frequency
separation is 1.2 times the bin width. The power spectrum is
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shown in Fig.1, where we find that the performance ofP̂HF is
superior to that of P̂DFT . In general, we find this to be a very
common occurence for different base (lower) frequencies.

Figure 1. Power spectrum for f1 = 194 Hz and f2 = 20.24 Hz with
AR=-0.1.

Note that the DFT estimate shows no low frequency peak,
though the zoomed view does show that “something” is
happening. In fact, when more channels are chosen, the lower
frequency peak for the DFT is gradually revealed, but it is still
only showing a small peak when compared to the HF peak.
Another thing to note is: the measured f2 peak value from HF
is more accurate than that obtained from the DFT.

To compare the two methods, we use the Normalized Mean
Square Error (NMSE) of the peak positions of f1 and f2:

NMSE =
1

T − 1

T∑
i=1

(xi − x̄)2 + (x̄− f)2

where xi are the estimated frequency values with the ith noise,
f is the vector of true frequencies, and x̄ = 1

T

∑
xi. We

normalize by the true frequencies, i.e. NMSE = MSE
ftf .

If we keep the same base frequency f1, and vary the
frequency separation from 0.74Hz to 1.74Hz, we observe
the problem in a different way. Fig.2 shows that the NMSE
of the HF is much smaller than that of the DFT with SNR=10
dB when 7 channels are selected from the filter bank, When
frequency separation is less than 1.184 Hz, both methods
degrade, though the DFT performance decrease is more se-
vere. For frequency separations greater than 1.184 Hz, the
DFT performance somewhat improves, though relatively its
performance remains poor. Note that when NMSE is 0dB,
the frequency is missed, i.e. there is no peak as in the case of
the lower frequency f1 for the DFT case of Fig.1.

The NMSE performance of the HF is superior and the
difference is more pronounced with small SNR, which is
consistent with the prediction in [2]. That the HOT can
perform better in moderate and low SNR environments is very
important in practical applications. Suppose that we change
the SNR from −2 dB to 30 dB with 7 channels selected,
while keeping all other parameters unaltered; this comparison
is shown in Fig.2. We can clearly see that even though the
f1 estimation by HF is not so stable, the performance of HF
is always better than that of the DFT over the entire SNR
range. We find that with increasing SNR, the NMSE of the
HF drops at a much lower rate. Changing the base frequency
does not alter the relative performance substantially.
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Figure 2. a) NMSE of two frequency components with different frequency
position . b) NMSE of two frequency components with different SNR .

7. CONCLUSIONS

We introduce a method of nonparametric spectral estimation
based on the HOT filter bank using the Iterative Hard Thresh-
olding method of Compressive Sensing. From our results, it
should be clear that the impact of our choice of transform
is important. Specifically, we develop a filter bank generated
with a combination of the HOT and DFT operations which
we call the HF filter bank to preprocess the signal, and apply
the compressive sensing method to their reconstructed signals.
We calculate the smoothed periodogram with Quinn’s method.
When compared to the DFT-only standard filter bank method,
the power spectrum generated with our proposed method
is superior over varying SNR, amplitude ratios, frequency
separation, and number of channels used in the compressive
sensing algorithm. Future work must be done to determine an
automated method for choosing the right number of channels,
as well as for the peak determination. Also, we need to analyze
the frequency resolution of the HF method.
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