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ABSTRACT

We study the problem of estimating the fundamental frequen-
cies of a signal containing multiple harmonically related si-
nusoidal signals using a novel block sparsity representation
of the signal model. An efficient algorithm for solving the
resulting optimization is devised exploiting an alternating di-
rections method of multipliers (ADMM) formulation of the
problem. The superiority of the proposed method, as com-
pared to earlier methods, is demonstrated using both simu-
lated and measured audio signals.

Index Terms— Multiple pitch signals, pitch estimation,
block sparsity, order estimation.

1. INTRODUCTION

The problem of estimating the fundamental frequency, or
pitch, of a periodic waveform occurs in various forms of
applications, and has received notable interest over the re-
cent years. For example, several speech and audio problems
notably depend on the initial forming of an estimate of the
pitch or pitches, including problems in source separation,
enhancement, compression, and classification (see, e.g., [1,2]
and the references therein). Commonly, the pitch estimate
from single source signals, i.e., signals containing only a
single pitch, are formed using different kinds of similarity
measures, such as the cross-correlation, cepstrum, or the av-
erage squared difference function (see also [1]). Generally,
such techniques suffer from not yielding unique estimates
even in the ideal case, even for a single source. Recent work
has aimed at instead forming the pitch estimate using second
order statistics [1–4]. For multi-source signals, containing
several harmonically related signals, these methods estimate
each of the present pitch signals separately, forming different
forms of iterative estimation schemes, typically requiring a
priori knowledge of both the number of sources and the model
order of each of these sources. In this work, we examine a
novel method for estimating the fundamental frequencies of
a signal with multiple pitches, without assuming any prior
knowledge of either the number of sources present or their
number of harmonics. The proposed method, here termed
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the Pitch Estimation using Block Sparsity (PEBS) algorithm,
introduces a block sparse formulation of the estimation prob-
lem, exploiting that the signal may be viewed as formed from
a dictionary consisting of a set of blocks each containing a set
of harmonically related signals, for each possible fundamen-
tal frequency. As the resulting convex optimization problem
is computationally cumbersome, we also derive an efficient
algorithm based on the alternating directions methods of
multipliers (ADMM) technique (see, e.g., [5, 6]).

2. BLOCK SPARSE SIGNAL MODEL

Consider a complex-valued signal, y(n), consisting of K har-
monically related sources with fundamental frequencies ωk,
for k = 1, . . . , K, such that [1]

y(n) =

K∑
k=1

Lk∑
l=1

ak,le
jωkln + e(n) (1)

for n = 1, . . . , N, where ak,l and Lk denote the (complex-
valued) amplitude of the lth harmonic of the kth source, and
the number of harmonically related sinusoids for the kth

source, respectively, and where w(n) is an additive noise
term, here assumed to be a circularly symmetric complex
Gaussian process. It is worth noting that due to the restriction
of the allowed frequency range, the number of harmonics are
restricted as a function of the fundamental frequency, such
that Lk < b2π/ωkc, where b·c denotes the round-down to
nearest integer operation. Introducing

y =
[
y(1) . . . y(N)

]T
(2)

where (·)T denotes the transpose, allows one to express (1)
succinctly in matrix notation, such that the model is repre-
sented as a linear combination of columns, where each col-
umn corresponds to one sinusoidal component, i.e.,

y =

K∑
k=1

Vkak + eN
∆
= Wa + eN (3)
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where eN is a vector of noise terms constructed in the same
manner as y, and

W =
[
VT

1 . . . VT
K

]T
(4)

Vk =
[
zk z2

k . . . zLk

k

]T
(5)

a =
[
a1 . . . aK

]T
(6)

ak =
[
ak,1 . . . ak,Lk

]
(7)

with the powers of zk being evaluated element-wise, and

zk =
[
ejωk . . . ejωkN

]T
(8)

Reminiscent to the models considered for line spectra (see,
e.g., [7–9]), we expand the matrix W to be formed instead
over a (large) range of possible fundamental frequencies, ν`,
for ` = 1, . . . , P , where P denotes the total number of con-
sidered frequencies, such that the corresponding amplitude
vector, a, will have elements different from zero only for
those frequencies actually coinciding with the frequencies in
the signal. Thus, for the signal in (1), for each source in the
signal, there will be a corresponding non-zero block in the
amplitude vector, i.e., if the source has fundamental frequency
ω`, the sub-block a` will be non-zero. It should be noted that
this formulation thus assumes that P is selected large enough
so that the true frequencies lie at least close to the used grid
over ν`, but practical experience shows that the developed al-
gorithm is quite robust to this approximation (see also the re-
lated discussions in [8, 10]). Given the structure of (3), the
resulting approximation of the signal is not only sparse, but
also block sparse, and reminiscent of the block sparse formu-
lations introduced in [11, 12], one may thus form an estimate
of the present sources as

minimize
a

1

2
||y−Wa||22 + λ||a||1 + α

P∑
k=1

||ak||2 (9)

where || · ||p denotes the `p norm, and with α and λ being
tuning parameters that control the relative importance of the
sparsifying regularizers and the 2-norm fitting term, discussed
further below. It should be stressed that the number of har-
monics of each source, Lk, is not known, and to be able to use
the presented sparse approximation model, one needs thus to
set a maximum allowed number of harmonics for all sources,
Lmax. However, as the number of harmonics for each source
is upper limited by the Nyquist frequency, the harmonically
related sub-blocks, Vk, will typically contain fewer harmon-
ically related components for the higher frequencies, thereby
causing different blocks to be of different sizes. Since the
(generic) f0 harmonics will make up a subset of the block de-
tailing the f0/2 harmonics, the minimization in (9) will then
in all cases prefer the block corresponding to the lower fre-
quency. In order to resolve this problem, we introduce a nor-
malization in the minimization, such that the blocks are given

Algorithm 1 The general ADMM algorithm
1: Initiate z = z0,u = u0, and k = 0
2: repeat
3: zk+1 = argmin

z
f1(z) + µ

2 ||Gz− uk − dk||22
4: uk+1 = argmin

u
f2(u) + µ

2 ||Gzk+1 − u− dk||22
5: dk+1 = dk −Gzk+1 − uk+1

6: k ← k + 1
7: until convergence

comparable weights, instead forming the minimization

minimize
a

1

2
||y−Wa||22 + λ||a||1 + α

P∑
k=1

√
∆k||ak||2

(10)

where ∆k denotes the number of harmonics in block k given
as min(Lmax, Lk). Considering that the signals of interested
are only approximately sparse in W, and as the columns of
W are correlated, one cannot expect the resulting (block)
pseudo spectral solution, formed over the peaks of the 2-norm
of the estimated amplitudes, ||ak||2, to have exactly as many
non-zero blocks as there are sources present in the signal. In
order to determine the number of sources present, we there-
fore form a BIC-style criterion, where (cf. [8, 13])

BICk = 2N ln(σ̂2
k) + (5Hk + 1) ln(N) (11)

with σ̂2
k dentoing the variance of the estimation residual when

subtracting the Hk harmonics corresponding to the k domi-
nant peaks of the pseudo spectrum, such that the number of
sources are selected as

K̂ = argmin
k∈[1,Kmax]

BICk (12)

where Kmax denotes the number of peaks present in the
pseudo-spectra.

3. AN EFFICIENT ADMM IMPLEMENTATION

The convex minimization in (10) can be readily implement
using various freely available solver, such as CVX [14, 15],
SeDuMi [16] and SDPT3 [17], although such solvers will in
many cases be too computationally intensive to be useful for
larger data sets or in situations where one has real-time limita-
tion on the computation time. In order to form a more efficient
implementation, we therefore reformulate the minimization in
(10) using the ADMM approach (see, e.g., [5]), which solves
general convex optimization problems of the form

minimize
z

f1(z) + f2(Gz) (13)

where z ∈ Rp is the optimization variable, f1(·) and f2(·)
are convex functions, and G ∈ RN×p is a known matrix.
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Algorithm 2 Block Sparse Pitch Estimation via ADMM
1: Initiate z = z0,u = u0 and k := 0
2: repeat

3: zk+1 =
[
AHA + 2I

]−1 (
AHξ(1)

k + ξ
(2)
k + ξ

(3)
k

)
4: u

(1)
k+1 =

y−µ
(

Azk+1−d(1)
k

)
1+µ

5: u
(2)
k+1 = Ψ

(
zk+1 − d(2)

k , λµ

)
6: for m = 1, . . . , P do
7: u

(3,m)
k+1 = Ψ

(
z(m)
k+1 − d(3,m)

k , αm

µ

)(
z(m)
k+1 − d(3,m)

k

)
8: end for
9: dk+1 = dk − (Gzk+1 − uk+1)

10: k ← k + 1
11: until convergence

This is accomplished by introducing the auxiliary variable, u,
allowing (13) to be decomposed into two, hopefully simpler,
optimization problems, i.e.,

minimize
z, u

f1(z) + f2(u) +
µ

2
||Gz− u||22

subject to Gz− u = 0
(14)

where µ is a tuning variable which needs to be set by the user,
further discussed below. Note that the added quadratic term
will not affect the optimal value since at any feasible point
it will be equal to zero. Solving (14) by alternatively maxi-
mizing over z and u leads to the general ADMM algorithm
outlined as Algorithm 1. Clearly, this reformulation is only
relevant when the optimizations in steps 3 and 4 can be car-
ried out easily as compared to the original problem. One pos-
sibility to reformulate (10) in this fashion would be to choose
f1(·) as the 2-norm fitting term and f2(·) as the sum of the
sparse regularization term, although this would then lead to a
difficult optimization problem in step 4. Herein, we instead
exploit the recent idea introduced in [6], where by a clever
choice of functions the f1(·) and f2(·), one can extend (13) to
a minimization of a sum of B convex functions, i.e.,

minimize
z

B∑
k=1

gk(Hz) (15)

where B is the number of functions, Hk ∈ RN×p are known
matrices, and gk(·) convex functions. This is accomplished
by setting f1(z) = 0, and

f2(Gu) =

B∑
k=1

gk(Gu) =

B∑
k=1

gk(Hku(k)) (16)

where

G =
[
HT

1 . . . HT
K

]T
(17)

u =
[

(u
(1)

)T . . . (u(K))T
]T

(18)
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Fig. 1. Ratio of estimated pitches where both fundamental
frequencies lie at most 0.001 from the ground truth, plotted
as a function of SNR for α = λ = 0.5χ and χ = 0.2.

thereby allowing step 4 in Algorithm 1 to be decomposed into
B independent optimization problems. Rewriting (10) on the
form in (15), noting that for this case, B = 3, and

f2(Gu) =
1

2
||u(1) − y||+ λ||u(2)||1 + α

P∑
k=1

√
∆k||u(3,k)

k ||2

where G =
[

AT I I
]T

, and

u =
[

(u(1))T (u(2))T (u(3))T
]T

u(3) =
[

(u(3,1))T . . . (u(3,P ))T
]T

This implies that step 3 in Algorithm 1 can be solved as

zk+1 = argmin
z
||Gz− uk − dk||22

=
[
AHA + 2I

]−1 (
AHξ(1)

k + ξ
(2)
k + ξ

(3)
k

)
where d is decomposed in the same manner as u, and

ξ
(m)
k

∆
= u(m)

k + d(m)
k

for m = 1, 2, 3. Step 4 in Algorithm 1 thereby decom-
poses into three different and decoupled optimization prob-
lems; firstly, for the first block,

u
(1)
k+1 = argmin

u

1

2
||u− y||22 +

µ

2
||Azk+1 − u− d

(1)
k ||

2
2

=
y− µ

(
Azk+1 − d(1)

k

)
1 + µ

Secondly, the second block decouples intoLP one-dimensional
optimizations, whose solution yields

u
(2)
k+1 = argmin

u
λ||u||1 +

µ

2
||Azk+1 − u− d

(2)
k ||

2
2

= Ψ

(
zk+1 − d(2)

k ,
λ

µ

)
�
(

zk+1 − d(2)
k

)
(19)
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Fig. 2. Ratio of estimated pitches where both fundamental
frequencies lie at most 0.001 from the ground truth, plotted
as a function of ∆ω, for α = λ = 0.5χ and χ = 0.2.

where � denotes the Hadamard product and Ψ is a shrinkage
function, defined as

Ψ(a, γ) =
max(|a| − γ, 0)

max(|a| − γ, 0) + γ
(20)

with both the max function and the absolute value being in-
terpreted element-wise. Finally, the third block can be found
to decouple into P optimization problems, each of the form

u
(3,m)
k+1 = argmin

u
αm||u||1 +

µ

2
||z(m)

k+1 − u− d
(3,m)
k ||22

= Ψ

(
||z(m)
k+1 − d(3,m)

k ||2,
αm
µ

)(
z(m)
k+1 − d(3,m)

k

)
The resulting ADMM algorithm for the block sparse pitch
estimation problemis summarized in Algorithm 2.

4. NUMERICAL RESULTS

We proceed to examine the robustness and performance of the
proposed PEBS estimator, using both simulated and real au-
dio signals, comparing with the Capon, ANLS, and ORTH al-
gorithms [1]. Initially, examining simulated signals, we form
a signal consisting of two sources with the fundamental fre-
quencies, ω1 and ω2, drawn uniformly on [0.02π, 0.2π] in
such a way that the minimum difference between the frequen-
cies is at least 1/30 of the frequency range. The performance
of the estimates for the different algorithms are computed us-
ing 250 Monte-Carlo simulations, wherein the number of har-
monics are selected uniformly over [3,min(floor(π/ωi), 10)]
in each simulation, in order to ensure that all frequencies
are below the Nyquist limit, and with amplitudes drawn as
ai,k ∼ N(0, 1), except for the amplitude of the fundamental
frequency which is set to one to avoid ambiguity in the true
fundamental frequency. The signal to noise ratio (SNR), de-
fined as 10log10(||y||2/||w||2), is set to 15. To ensure the best
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Fig. 3. Ratio of estimated pitches where both fundamental
frequencies lie at most 0.001 from the ground truth, plot-
ted as a function of χ for α = cχ, λ = (1 − c)χ, for
c ∈ {0, 1/2, 1/3, 2/3}.

possible performance, the reference methods are allowed per-
fect a priori knowledge of both the number of present sources
and their respective number of harmonics, whereas the PEBS
estimator is only given that the maximum number of harmon-
ics for any present source is 10. Figure 1 shows the percent-
age of estimates where the estimated pitches are±0.001 from
the true value, for varying SNR, clearly showing the prefer-
able performance of the proposed PEBS algorithm. To exam-
ine the effects of closely spaced fundamental frequencies, we
next consider the pitches ω1 = 0.06π and ω2 = ω1 + ∆ω.
Here, to clarify the effects of the source separation, L1 = 7
and L2 = 5, αk,l = 1, ∀k, l, although with random phase.
Figure 2 shows the resulting performance as a function of
∆ω, again confirming the preferable performance of the pro-
posed estimator. In the above simulations, we used α = cχ,
λ = (1 − c)χ, for c = 0.5 and χ = 0.2. We proceed to
examine the robustness to the selection of these user parame-
ters. Figure 3 illustrates the resulting performance as a func-
tion of χ for different values of c, for SNR=15. To increase
clarity, the results are here only compared to the ORTH esti-
mator, which exhibited the best performance of all the ref-
erence methods. As shown in the figure, the performance
is quite insensitive to the choice of the user parameters, al-
though their relative ratio, typically estimated using cross val-
idation, does make some difference in performance. Finally,
we examine real audio using the Sound Quality Assessment
Material recordings for subjective tests (SQAM)1, where we
chose the file 21.flac, which is a sequence of tones from
a trumpet. All the discussed estimators were able to estimate
the fundamental frequency for each considered tone, but after
mixing two tones, equating their power, only the PEBS and
ORTH algorithms managed to accurately estimate the pitch
frequencies.

1Available at http://tech.ebu.ch/publications/sqamcd
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