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ABSTRACT
The adaptive spectral estimation method IAA provides better
performance than the periodogram at the cost of higher com-
putational complexity. Current fast IAA algorithms reduce
the computational complexity using Toeplitz/Vandermonde
structures, but are not efficient for missing data cases when
the number of missing samples is small. We considerably
reduce the computational complexity compared to the state-
of-the-art by using a low rank completion to transform the
problem to a Toeplitz/Vandermonde structured problem.

1. INTRODUCTION

A fundamental task in spectral estimation is to estimate noisy
sinusoids’ frequencies and amplitudes from a set of measure-
ments [1]. The common solution is to use the periodogram to
estimate the spectra, a method which in general suffers from
large sidelobes and poor resolution. In the case of missing
data, the sidelobe problem becomes even worse due to mod-
ulation in the sampling domain by the incomplete sampling
pattern.

A recently developed high resolution nonparametric spec-
tral estimation technique, the iterative adaptive approach
(IAA) [2], can also be used in the missing data case (MIAA)
[3]. This is a method based on iterative weighted minimiza-
tion, where the weight is updated to increase the resolution
and suppress sidelobes. IAA provides resolution superior
to the periodogram, and has the advantage that only a sin-
gle snapshot is required. The major drawback of IAA is
the computational costs for a direct implementation. In two
recent papers ([4], [5]) implementations of IAA were devel-
oped based on FFT operations, which considerably speeds
up the algorithm and makes it applicable for larger problems.
These fast implementations utilize Topelitz and Vandemonde
structures that arise when the sampling grid is uniform and
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complete. When the sampling grid is not complete the struc-
tures are lost, and the fast implementations are not efficient
when the number of missing samples is small. To resolve
this, we use a low rank completion to transform the prob-
lem to the structured problem where the covariance matrix is
Toeplitz. This leads to the main contribution of this paper,
a fast implementation of MIAA which is considerably faster
than the state-of-the-art for the case when the proportion of
missing data is small.

In Section 2 we set up the data model, discuss the spectral
estimation problem, introduce the algorithm IAA, and discuss
the computational complexity. In Section 3 the missing data
algorithm is discussed and we present the new fast algorithm
for missing data IAA. In Section 4 we present examples that
illustrate the computational benefits of the new algorithms.

2. SPECTRAL ESTIMATION AND IAA

Consider the problem of recovering the spectral content from
a measured signal. Let y = [y0, y1, . . . , yN−1]T denote a
sampled data sequence of length N and let

A = [a(ω0), . . . ,a(ωK−1)] (1)

be an oversampled Fourier matrix such that K > N . The
columns of A are a(ωk) =

[
1, ejωk , . . . , ej(N−1)ωk

]T
which

correspond to the frequency vectors and ωk corresponds to
the frequency grid point ωk = 2πk

K , for k = 0, . . . ,K − 1.
Let x = [x0, x1, . . . , xK−1]T where xk denotes the complex
spectral content at frequency ωk of the signal y. The goal is
to estimate an envelop for x from the data model

y = Ax + e, (2)

where e is the noise. The most common method for solving
this is the periodogram (matched filter method),

xk =
a(ωk)∗y

a(ωk)∗a(ωk)
, k = 0, 1, . . . ,K − 1, (3)

which corresponds to time domain convolution of the signal
y with the column vectors in A. This is computationally ef-
ficient, but suffers from high sidelobes and poor resolution.
One way to overcome these issues is to use data-adaptive
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methods such as the Capon method [6], [7], Amplitude and
Phase Estimation (APES) [8], [9], or Iterative Adaptive Ap-
proach (IAA) [2]. Here we will focus explicitly on IAA as it
has shown promise in the fields of radar imaging, sonar, com-
munications [2], medical diagnostics [10], information foren-
sics [11], and general spectral estimation [12].

2.1. Iterative Adaptive Approach (IAA)

IAA seeks to find a spectral estimate xk in (2) by modeling
the rest of the spectrum x`, ` 6= k, as interference [2]. The
covariance matrix Qk of the interference and noise, where
interference refers to all the signals at frequency grid points
other than the grid point of interest ωk, is given by

Qk = R− pka(ωk)a(ωk)∗,

where

R =
K−1∑
k=0

pka(ωk)a(ωk)∗ = APA∗. (4)

Here R is the covariance matrix of the data and P = diag(p),
where p = (p0, p1, . . . , pK−1)T , and pk = |xk|2 denotes
the power estimate at the frequency grid point ωk, for k =
0, 1, . . . ,K − 1. This results in minimization of the weighted
quadratic cost function

(y − a(ωk)xk)∗Q−1
k (y − a(ωk)xk), (5)

where the optimal solution is given by

xk =
a(ωk)∗Q−1

k y

a(ωk)∗Q−1
k a(ωk)

=
a(ωk)∗R−1y

a(ωk)∗R−1a(ωk)
, (6)

for k = 0, 1, . . . ,K − 1. The second equality in (6) is ob-
tained using the matrix inversion lemma. This considerably
speeds up the calculation since inversion of Qk is not needed
for each frequency grid point. Note that R depends on x,
hence solving Equations (4) and (6) is a non-trivial task. IAA
handles this in an iterative manner. The algorithm starts with
an initial solution which is often taken as the Periodogram (3),
or equivalently letting R = I. The following steps are then
taken:

1. The covariance matrix R is calculated using (4),

2. xk is calculated using (6) for k = 0, 1 . . . ,K − 1.

Steps 1) and 2) are repeated until convergence, and the spec-
tral estimate in the point ωk is given by pk = |xk|2. From
empirical results usually 10 − 15 iterations are sufficient for
the algorithm to converge [2].

2.2. Computational complexities and fast IAA

In each iteration IAA requires evaluation of the numerator and
denominator of the expression (6), denoted by

ΦN(ω) = a(ω)∗R−1y, (7)
ΦD(ω) = a(ω)∗R−1a(ω), (8)

at each of the points ωk, k = 0, 1, . . . ,K − 1. Using a brute
force approach, this takes O(N2K) [13] which is too com-
putationally demanding in many applications. In [4] an al-
gorithm is developed where Toeplitz and Vandermonde struc-
tures are used to calculate IAA several orders of magnitudes
quicker by utilizing FFT operations [14, 15]. The overall
computational cost isO(N2 +K logK). Here the Levinson-
Durbin (LD) algorithm is used for finding the solution to the
Gohberg-Semencul (GS) factorization of R (see, e.g., [16,
1]). This methodology for computing fast IAA was indepen-
dently developed in [4] and [5], and they are based on earlier
fast implementations of APES [17].

3. MISSING DATA IAA AND FAST CALCULATIONS

In [3], IAA was applied to problems where data samples are
missing.1 In this section we treat the spectral estimation part
of missing data IAA and provide a new algorithm that is fast
when the number of missing data samples is small.

Consider the problem of estimating x from a vector of
available data yg, which is a subset of the full data vector
y. The available and missing part of y may be represented
as yg = Sgy, ym = Smy, where Sg ∈ RNg×N and
Sm ∈ RNm×N are the selection matrices corresponding to
the available and missing samples, respectively. Here Ng and
Nm denote the number of available data and missing data, and
hence N = Ng +Nm.

The data model (2) is now replaced by

yg = Sgy = SgAx + e (9)

where SgA is the steering matrix and the vector x is sought.
Since IAA is applicable for the missing data case, each itera-
tion of MIAA is now to evaluate

xk =
ag(ωk)∗Rg

−1yg

ag(ωk)∗Rg
−1ag(ωk)

, (10)

where ag(ωk) = Sga(ωk),

Rg = SgAPA∗Sg
∗ = SgRSg

∗, (11)

and as before P = diag(pk) where pk = |xk|2, for k =
0, . . . ,K − 1. Denote the numerator and denominator of (10)
by

ΨN(ωk) = ag(ωk)∗Rg
−1yg

ΨD(ωk) = ag(ωk)∗Rg
−1ag(ωk).

Here Rg is not Toeplitz and several of the steps in the fast
implementation from [4] breaks down, including the GS fac-
torization. A fast approach was proposed in [5] requiring
O(Ng

3 + K logK) number of operations. The main bur-
den here is the inversion of the matrix Rg . If the number

1This case may be seen as a problem with nonuniform data sampling,
hence IAA still applies [3].
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of available samples Ng is small, then this is not a problem.
However, if the number of available samples Ng is large, then
this inversion will be the bottleneck.

3.1. Fast calculation of missing data IAA

Consider the case where the number of missing samples Nm

is small compared to all samples N . The problem is how to
utilize the structure of Rg and Sg for evaluating the trigono-
metric polynomials ΨN(ω) and ΨD(ω). The calculations rely
on the following key proposition, which allows us to express
the matrix product Sg

∗Rg
−1Sg as a sum of a low rank matrix

and the inverse of a Toeplitz matrix.

Proposition 1 Let R > 0 and Rg be defined by (11) where
A is the steering matrix defined in (1). Then

Sg
∗Rg

−1Sg = R−1 − Γ

where Γ is given by

Γ := R−1Sm
∗(SmR−1Sm

∗)−1SmR−1.

Proof: Let S denote the unitary matrix ST = (Sg
T ,Sm

T )
which may be used to partition R corresponding to the miss-
ing and available samples of y(

Rg Rgm

Rmg Rm

)
= SRS∗ =

(
SgRSg

∗ SgRSm
∗

SmRSg
∗ SmRSm

∗

)
.

Since S is unitary, we have (SRS∗)−1 = SR−1S∗ and
blockwise matrix inversion gives

Rg
−1 = (SgRSg

∗)−1

= SgR
−1Sg

∗ − SgR
−1Sm

∗(SmR−1Sm
∗)−1SmR−1Sg

∗

= Sg(R−1 − Γ)Sg
∗.

Note that ΓSm
∗ = R−1Sm

∗, and hence

Sg
∗Rg

−1Sg = Sg
∗Sg(R−1 − Γ)Sg

∗Sg

= (IN − Sm
∗Sm)(R−1 − Γ)(IN − Sm

∗Sm)

= R−1 − Γ. �

Denote by yf = Sg
∗yg, the vector y with the missing

samples zeroed out. Using Proposition 1, we can express the
numerator ΨN(ω) and denominator ΨD(ω) in terms of the
full data numerator ΦN(ω) and denominator ΦD(ω):

ΨN(ω) = a(ω)∗Sg
∗Rg

−1Sgyf = a(ω)∗(R−1 − Γ)yf

= ΦN(ω)− a(ω)∗Γyf , (12)

ΨD(ω) = a(ω)∗Sg
∗Rg

−1Sga(ω) = a(ω)∗(R−1 − Γ)a(ω)

= ΦD(ω)− a(ω)∗Γa(ω). (13)

Here ΦN and ΦD may be evaluated efficiently as in [4] where
yf replaces y, using the Toeplitz structure of R. The rank of
Γ is equal to Ng, a fact which may be used for calculating
the remaining parts of ΨN and ΨD. Next we will utilize this
structure in order to evaluate (12) and (13) efficiently.

3.1.1. Get R, the GS factorization of R−1, and evaluate
ΦN(ω) and ΦD(ω)

This is done exactly as in [4] using y = yf in O(N2 +
K logK).

3.1.2. Get L = (SmR−1Sm
∗)−1/2 and X = Γ1/2

Calculate R−1 = [rinv1 , . . . , rinvN ] recursively using the dis-
placement structure of R−1 (see (18)-(20) in [18])

rinvk =

{
(uu∗ − ũũ∗)ek/u(1) k = 1
Drinvk−1 + (uu∗ − ũũ∗)ek/u(1) k > 1,

in O(N2). Here Ru = e1, ũ∗ = (0, u(N), u(N −
1), . . . , u(2)) and D is the shift (down) matrix. Then get
SmR−1Sm

∗ by selecting the rows and columns correspond-
ing to the missing data. Let L ∈ CNm×Nm be the inverse of
the Cholesky factor of SmR−1Sm

∗ (calculated in O(Nm
3)),

i.e.,
LL∗ = (SmR−1Sm

∗)−1.

Finally, get X ∈ CN×Nm satisfying XX∗ = Γ, by multipli-
cation X = R−1(Sm

∗L) using2 the GS factorization of R−1,
in O(NmN logN).

3.1.3. Evaluate a(ω)∗Γyf

The remaining part of the numerator ΨN , i.e., a(ω)∗Γyf , may
be calculated by noting that

a(ω)∗Γyf = a(ω)∗XL∗SmR−1yf . (14)

In this expression first the R−1yf multiplication is car-
ried out using the GS-factorization, Sm(R−1yf) by select-
ing the rows corresponding to the missing data, and then
XL∗(SmR−1yf) by standard matrix-vector calculations (in
O(NgN + N logN)). Finally (14) is evaluated at ωk for
k = 0, 1, . . . ,K − 1 by noting that3

[a(ω0)∗Γyf , · · · ,a(ωK−1)∗Γyf ]
T

= F(XL∗SmR−1yf)K .

3.1.4. Evaluate a(ω)∗Γa(ω)

The remaining part of the numerator, i.e., a(ω)∗Γa(ω) may
be calculated by noting that

a(ω)∗Γa(ω) = a(ω)∗XX∗a(ω) =

N−1∑
`=−N+1

c`e
j`ω

is a trigonometric polynomial. Here the coefficient c` is the
`th diagonal of XX∗ (c` = c̄−`), and may be calculated in

2For small data sizes, multiplication (R−1Sm
∗)L is fasterO(N2

mN).
3A fast Fourier transform operation (FFT) of size F is denoted byF(·)F ,

where appropriate zero padding is performed if necessary. A denotation of
(·)1:N represents an indexing operation, i.e. elements 1 to N of a vector.
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Fig. 1. Upper graph: missing data IAA spectral estimate.
Lower graph: periodogram based on the available data.

O(NmN logN) using Toeplitz matrices (c.f., Appendix B
[19]) cN−1

...
c0

 =

Nm∑
`=1

 X(1, `)
...

. . .
X(N, `) · · · X(1, `)




X(N, `)
...

X(1, `)

 .

Since the grid {ωk}K−1
k=0 is uniform, a(ωk)∗Γa(ωk) may

be computed using FFT from the coefficients {cn}N−1
n=−N+1.

This may be expressed as

φΓ = F(c) (15)

where c = [c0, c1, . . . , cN−1,0
T
K−2N+1, c−N+1, . . . , c−1]T

and φΓ = [a(ω0)∗Γa(ω0), . . . ,a(ωK−1)∗Γa(ωK−1)]T ,
which is evaluated in O(K logK).

3.1.5. Get ΨN(ω) and ΨD(ω)

Get the evaluations of ΨN(ω) and ΨD(ω) from (12) and (13)
using (14) and (15). Each iteration is calculated in O(Nm

3 +
NmN logN +N2 +K logK).

4. APPLICATION: SINUSOID IDENTIFICATION

Consider an example of identification of sinusoids in noise
where the signal yn is given by

yn =

6∑
`=1

2 sin(nω̂` + v`) + wn, n = 0, 1, . . . .N − 1,

where wn is Gaussian white noise with variance 1, v` is a
random variable with uniform distribution on [0, 2π], and ω̂`
denote the frequencies (0.8, 1.2, 1.4, 1.5, 1.55, 1.575) of the

real sinusoids. In the first example, N = 200, K = 8N =
1600 and 10% (= 20) of the samples are missing in two gaps.
Spectral estimates are based on the missing data IAA and the
periodogram.

Figure 1 shows the spectral estimates, where it can be seen
that MIAA has considerably lower sidelobes and better reso-
lution than the periodogram. In this work we focus on the
computational complexity of MIAA, and refer to [13] and [3]
for comparison of MIAA with other methods. Instead we
compare the computational complexity of the proposed im-
plementation of MIAA with the ones proposed in [5, 13].

Next consider the two cases N ∈ {2000, 8000} and K =
8N . For each of those cases we compare the average time
to perform a MIAA iteration over 10 total iterations of the
proposed algorithm with the average time to invert Rg in each
iteration. This is done by selecting missing data randomly,
with the missing data ratio going from 5% to 40%. The results
are shown in Table 1, and when the missing data is less than
25%, the proposed algorithm provides significant reduction of
the computation time compared to the state-of-the-art [5, 13].

Table 1. Average computation time per iteration

Missing N = 2000,K = 8N N = 8000,K = 8N
data MIAA Invert Rg MIAA Invert Rg

5% 0.25 2.25 2.62 121.09
10% 0.31 2 4.17 104.09
15% 0.38 1.65 7.66 87.59
20% 0.48 1.41 13.98 73.06
25% 0.59 1.18 22.93 59.09
30% 0.75 0.99 35.95 48.41
35% 0.98 0.82 50.21 39.03
40% 1.34 0.67 71.66 31.17

5. CONCLUSIONS

In this paper a new approach for fast missing data IAA is de-
signed for cases where the amount of missing data is small.
This method utilizes structures in the MIAA algorithm and
a low rank completion to replace a nonstructured problem
with a structured problem. This allows for reducing the com-
putational complexity from O((N − Nm)3 + K logK) to
O(Nm

3 + NmN logN + N2 + K logK), which is a con-
siderable improvement when the number of missing data Nm

is much less than the total number of data N . The proposed
method shows considerable improvements in computational
complexity compared to the state-of-the-art [5, 13]. Asymp-
totically this implementation is faster whenever Nm < Ng,
and from the examples there is considerable improvement in
computation times for missing data ratios less than 25%.
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