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ABSTRACT

In this work, we propose a novel subspace-based estimator of
periodicities in symbolic sequences. The estimator exploits
the harmonic structure naturally occurring in symbolic se-
quences and iteratively forms the estimate of the periodicities
using a MUSIC-like formulation. The estimator allows for
alphabets of different sizes, but is here illustrated using both
simulated and real DNA measurements, showing a notable
performance gain as compared to other common estimators.

Index Terms— Spectrum analysis, symbolic sequences,
hidden periodicities, subspace techniques.

1. INTRODUCTION

Symbolic sequences appear in numerous applications wherein
measurements are formed from a finite alphabet of unordered
symbols, typically lacking any form of algebraic structure.
Examples of such data include genomic and proteomic se-
quences, text indicators, and various forms of categorical
time series [1]. One commonly occurring problem for such
measurements lies in the forming of an estimate of periodic-
ities in the data; for example, the latent periodicities in DNA
sequences have been shown to be correlated with various
forms of functional roles [2]. For purpose of illustration, we
will, without loss of generality, herein examine periodici-
ties of DNA sequences, for which the alphabet consists of
the symbols A, C, G, and T , and which governs, together
with the RNA, the making of protein in an organism. In
order to form an estimate of the periodicities hidden in the
sequence, one needs to perform some form of initial mapping
of the symbols. This is most commonly done by mapping
the four symbols into numerical values, then, using this map-
ping, form the Fourier spectra of the resulting sequence, see
e.g. [3]. An example of such a mapping is to assign the
symbols as T = 0, C = 1, A = 2, G = 3 [4], or to use the
complex representationsA = 1+j,C = −1−j,G = −1+j,
T = 1 − j, as is done in [5] and [6], although both alterna-
tives suffers from creating an undesired ordering between
the symbols, such that the Euclidian distance between the
symbols are not the same, thereby creating artifacts in the
spectrum [7]. Other alternatives includes using minimum
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Fig. 1. The Fourier spectrum formed using (1) of a symbolic
sequence with a periodicity of 8. The harmonic structure is
clearly visible.

entropy mappings, mapping equivalences, transformations,
or maximum likelihood formulations of the cyclostationary
properties of the periodicities [2, 8–10]. These forms of esti-
mators and mappings generally suffer from a relatively high
computational complexity and/or difficulties to scale the for-
mulation to an arbitrary alphabet. Furthermore, neither of
the mentioned approaches considers the natural harmonic
structure occurring in the data, such that a latent periodicity
of P symbols will also create periodicities of P/2, P/3, etc.
This harmonic structure is illustrated in Figure 1, showing the
Fourier spectrum obtained using (1), given below, for a sym-
bolic sequence containing a periodicity of 8. In this paper, we
propose a harmonically related subspace-based estimation
technique that not only allows for this harmonic structure,
but also scales easily to various alphabet sizes, as well as
for growing sizes of the symbolic sequence, in both cases,
requiring only a linear increase of complexity. The estima-
tor exploits a greedy iterative relaxation technique to extract
harmonically related structures from the symbolic sequence,
by iteratively estimating the most dominant periodicity in
the sequence, and then removing the found periodicity for
each symbol exhibiting it [11]. The dominant periodicity
of the resulting sequence is then found, and so on, until the
found periodicity is too weak to be deemed to be more than a
random fluctuation.
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Fig. 2. The upper bound of the expected correlation for dif-
ferent values of P and N .

2. HARMONICALLY RELATED SUBSPACE-BASED
PERIODICITY ESTIMATION

Consider an N-sample (reasonable stationary) symbolic se-
quence, S, made up from a set of B symbols, {sk}Bk=1. Each
such symbol, sk, is here mapped onto the B × 1 (column)
indicator vector ek, having a one at position k and zeros else-
where, forming the B × N matrix Y. Each row of Y can
thus be interpreted as the occurrences of the corresponding
symbol in the sequence S. Let yk denote the k:th row of Y.
One option for forming an estimate of the symbolic (Fourier)
spectrum would then be using the Discrete Fourier Transform
(DFT), by transforming each row yk separately, which then,
when combined, yield the spectral estimate for the whole se-
quence, i.e.,

FS(f) =

B∑
k=1

∣∣∣∣∣
N∑
a=1

yk(a)e
−i2πfa

∣∣∣∣∣
2

(1)

A similar mapping was used in [9], wherein the symbolic
spectrum was then formed using a weighted Fourier trans-
form, where the weights were used for finding which symbols
made up which periodicities. As is well known, in both cases,
the resulting periodogram estimate will suffer from poor reso-
lution as well as high variability, making it difficult to separate
higher order periodicities reliably. Herein, we instead use the
resulting rows to form an estimate of the corresponding co-
variance matrix estimate

R̂k =
1

N −M + 1

N−M+1∑
t=1

ỹk(t)
T ỹk(t) (2)

where (·)T and M denote the transpose and the length of the
considered subvectors, respectively, with

ỹk(t) =
[
yk(t) . . . yk(t+M − 1)

]
(3)
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Fig. 3. Detection ability for three different periodicities, as a
function of the threshold level α.

for t = 1, . . . , N −M + 1. The choice of the vector length,
M , should be made as a trade-off between variance and bias,
with shorter vectors yielding a more reliable estimate of R̂k,
although the resulting lower spectral resolution will also make
it harder to separate and detect closely spaced frequencies.
Combining these covariance matrix estimates, the joint co-
variance matrix of the sequence may thus be estimated as

R̂ =

B∑
k=1

R̂k (4)

It is worth noting that slightly better performance can be ob-
tain by using each covariance matrix separately, although this
gain comes at the cost of increasing complexity. For simplic-
ity, we will use the summed covariance in the following. We
now proceed by initially assuming the presence of just a sin-
gle periodicity, P1 = 1/f1, which appears with L1 harmon-
ics. Let G denote the matrix spanning the estimated noise
subspace, formed from the (M ×M − L1) eigenvectors cor-
responding to the M − L1 least significant eigenvalues, i.e.,

G =
[
uL1+1 . . . uM

]
(5)

where uk denotes the k:th eigenvector of R̂, and let Z1 denote
the Vandermonde matrix

Z1 =


1 1 · · · 1

z11 z21 · · · zL1
1

...
...

. . .
...

z
(M−1)
1 z

(M−1)2
1 · · · z

(M−1)L1

1

 (6)

where z1 = e2πif1 . It is worth noting that the number
of harmonics, L1, will only depend on the periodicity and
on the largest frequency in the frequency grid, fmax, i.e.,
L1 = bfmax/f1c, where b·c denotes the floor operator and
fmax ≤ 1/2 to avoid aliasing. As is well-known, for the
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Fig. 4. The local MEM spectra for the repeated sequence
CACCCG, with increasing levels of perturbation.

frequency f1, the matrix Z1 will be orthogonal to the noise
subspace, such that [12]

ZH1 G = 0 (7)

where (·)H denotes the conjugate transpose. Reminiscent to
the harmonic MUSIC-like algorithm formulated for pitch es-
timation of speech and audio signals in [13], the presented
formulation allows for the forming of an estimate of the hid-
den periodicity, using a simple 1-D search, as

f̂1 = argmin
f1

1

MK
||ZH1 G||2F (8)

= argmin
f1

1

MK

L1∑
l=1

||zH(f1)G||22 (9)

where
K = min {L1,M − L1} (10)

and L1 = bfmax/f1c. The denominator, MK, is a scal-
ing factor introduced to ensure a proper normalization of the
norm for the different model orders and frequencies. It should
be stressed that the resulting frequency estimate assumes that
only a single periodicity was present in S. In order to avoid
this limitation, we now proceed to extend the above formula-
tion to a relaxation-based iterative formulation, wherein, after
finding the most dominant periodicity, this is removed from
the measurement to allow for the estimation of the second
most dominant cycle, and so on. This is done by forming an
indicator sequence t1 such that every P1 = 1/f1 element is
set to one, whereas all remaining elements are set to zero. The
correlation between each vector yk and t1 yields which of
the B symbols that contained the periodicity, and with which
phase, thereby enabling its removal by forming the updated
data vector y

(2)
k = y

(1)
k − t1, where y

(1)
k denotes the k:th

symbol vector, wherein the periodicity was found, with the
updated symbol vector y

(2)
k being formed with this period-

icity removed. This removal is done for each symbol vector
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Fig. 5. The local SPE spectra for the repeated sequence
CACCCG, with increasing levels of perturbation.

having a correlation with t1, which is above the threshold α,
discussed further below. The resulting updated symbol vec-
tors are then used to form an updated covariance matrix rem-
iniscent to (4), followed by a new estimation using an esti-
mate formed reminiscent to (9), and so on. This procedure
will continue until no further periodicities are found, which
occurs when the found periodicity in iteration k, Pk, has a
correlation with the corresponding indicator vector, tk, that
is weaker than α. The threshold α therefore both determines
if a found periodicity is deemed to be significant, and as a
stopping criteria when no further periodicities occurs in the
sequence. Therefor, if set too high, the algorithm will miss
longer periodicities, whereas, if set too low, the robustness of
the algorithm will be effected. In order to select α, an upper
bound is determined by computing the correlation resulting
from a random vector, containing only a periodicity of P , and
the indicator sequence tk. The resulting correlation, as illus-
trated in Figure 2, indicates an upper bound on how strong
correlation that should be expected for a sequence with a pe-
riodicity of P , if found throughout the entire sequence. It
is worth noting that this periodicity is made up by just one
symbol, which produces a smaller correlation than a period-
icity containing more than one symbol. Furthermore, depend-
ing how many symbols that can be allowed to be replaced by
other symbols while still being deemed to indicate a relevant
periodicity, the used threshold α should be selected as the cor-
responding fraction of the obtained bound. In our experience,
a reasonable choice of α seems to be somewhere in between
60%-80% of the upper bound. For example, if a periodicity
of 20 is expected in an sequence with length 1000, a reason-
able α would be α = 0.25. The effect that α has on the per-
formance of the algorithm is depicted in Figure 3, where the
detection ability for three different periodicities are shown as
a function of α. We term the resulting estimator the Symbolic
Periodicity Estimation (SPE) algorithm.
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Fig. 6. Likelihood of correctly determining a hidden period-
icity with period P .

3. EXPERIMENTAL RESULTS

We proceed to examine the performance of the proposed esti-
mator in comparison with four other algorithms developed for
genomic sequences, namely PAM [7], QSKP [5], MEM1 [3],
and the Fourier-based estimator given in (1). First, the al-
gorithms are examined using a simulated random DNA se-
quence, with different periodicities. All the symbols have
then been formed with uniform probability. After thus form-
ing the random vector, a randomly selected symbol is in-
serted at every P :th index to creating a periodicity of P in
the sequence. The performance of the discussed estimators
is shown in Figure 6, illustrating the probability of correctly
detecting the periodicity in a N = 1000 long sequence, using
1000 Monte-Carlo simulations. Here, we set the MEM user
parameter N0 = 11 (as in [3]), and for the SPE algorithm,
use a subvector length of M = 50 and α = 0.2 as to reflect
the maximum expected periodicity. As can be seen from the
figure, the reference methods all have similar success rate in
finding the periodicity in the sequence, whereas the proposed
algorithm is showing preferable performance, having a suc-
cess rate of over 60% for periodicities below 20. Next, we ex-
amine the sensitivity of the estimator using the test introduced
in [3]. In this test, a non-stationary sequence, S, with length
N = 3600, is made up by the sequence CACCCG, repeated
over and over again. As in [3], the sequence is perturbed by a
random replacement of the symbols, such that the probability
of changing a symbol is n/N . The symbol is then replaced by
one of the possible symbols, which is drawn uniformly (and
can thus remain unchanged). Following [3], a sliding-window
spectrogram is computed for both the MEM and SPE algo-
rithms (to allow for non-stationary signals), using a window
length of Nw = 360, with the latter using α = 0.3. Figures 4

1The authors would like to thank Prof. Lorenzo Galleani and Dr. Roberto
Garello at Politecnico di Torino, Italy, for providing us with the their imple-
mentation of MEM-algorithm detailed in [3].
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Fig. 7. The local MEM spectrogram for the gene C. elegans.
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Fig. 8. The local SPE spectrogram for the gene C. elegans

and 5 show the results, clearly illustrating that the MEM al-
gorithm will capture both the periodicity and its harmonics,
whereas SPE will only capture the periodicity as such. Fur-
thermore, SPE can be seen to offer somewhat higher robust-
ness to the perturbations as compared to MEM. Finally, we
examine the performance of the proposed method for mea-
sured genomic data, examining the gene C. elegans F56F11.4
[14], which should occasionally contain a periodicity of 3, in-
dicating the presence of exonic regions, i.e., regions in the
DNA that contains protein codings, as well as regions con-
taining a periodicity close to 10 [3]. Again, we use a window
length of Nw = 360. Figures 7 and 8 show the resulting
MEM and SPE spectrograms, with the former not showing
the least dominant peaks in the estimate, and the latter using
α = 0.15 and M = 150. As could be expected, the MEM
estimate is quite noisy, making it difficult to detect the exonic
regions,whereas the SPE estimate is notably cleaner, making
it easy to detect these regions. The 10-periodicity seems to
be more pronounced in the MEM estimate than in the SPE
estimate; we are unaware to which extent this reflect any real
periodicity.
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