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ABSTRACT
In this work, we propose a computationally efficient time-
updating algorithm for estimating the spectral content of a
signal with missing samples. The algorithm extends earlier
work on the topic by formulating a data-interpolation scheme
reducing the required complexity to a fraction of the earlier
efficient implementation, without resulting in any noticeable
loss of performance for even a quite large degree of missing
samples.

Index Terms— Spectrum estimation theory and methods,
Iterative Adaptive Approach (IAA), fast algorithms

1. INTRODUCTION

The problem of estimating the spectral content of signals with
missing samples is commonly occurring in a wide range of
applications, where samples may be lost or unmeasurable for
a variety of reasons, such as sensor failure or due to differ-
ent forms of disturbances, and the topic has attracted a steady
interest over the recent decades (see, e.g. [1–6], and the refer-
ences therein). The developed methods range from classical
estimation methods such as the Lomb-Scargle periodogram,
which is able to handle irregularly sampled data [7, 8], to
high-resolution data-adaptive algorithms such as MAPES [5]
and MIAA [6], where both the latter are formed under the
assumption that the missing samples share the same spectral
content as the given samples. Of these, the MIAA algorithm
is based on the iterative adaptive approach (IAA) [9], which
has been shown to be able to outperform conventional data-
adaptive techniques, and, as a result, has since been expanded
to a variety of topics (see, e.g., [10–13] and the references
therein). Regrettably, the IAA method is computationally
cumbersome, and notable efforts have been made in the recent
literature to form computationally efficient batch as well as
time-recursive (TR) implementations [11–17]. In this work,
we examine the TR spectral estimation of data sets suffering
from missing samples. In order to formulate the problem, let
y(n) ∈ C represent a data sequence of observations for which
one wishes to compute the spectral estimate, whereof subsets
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of length N may be assumed to be (reasonably) stationary,
and let

yN (n) =
[
y(n−N + 1) . . . y(n)

]T
(1)

where (·)T denotes the transpose. In yN (n), Mn and M̄n

samples are assumed to given and missing, at time n, re-
spectively, such that the actually available measurements only
forms an Mn-dimensional subset of yN (n). In [6], a (batch)
MIAA estimator of data on this form was presented, for which
an efficient implementation was later introduced in [12]. In
[16], a computationally efficient sliding-window TR magni-
tude squared coherence (MSC) spectral estimator was then
developed for data of this form. We here term the resulting
estimator, when used to form just the spectral estimate of a
single signal, the fast TR-MIAA (FTR-MIAA) algorithm. In
this work, we extends and improve on these works, forming a
computationally efficient data interpolation formulation of the
TR sliding window updating of the MIAA algorithm. This is
done by exploiting interpolation of the already reconstructed
and given samples in yN (n) to reconstruct the most recent
sample, y(n), unless given, using the time domain interpola-
tion approach introduced in [6] as a method for missing data
reconstruction from the given data and the estimated MIAA
spectrum. As compared to the FTR-MIAA algorithm, the pre-
sented data-interpolation algorithm allows for a notable re-
duction in the computational complexity, which is indepen-
dent of the amount of missing data. The resulting algorithm
has a complexity being proportional to O(N2), which typ-
ically is significantly less than O

(
M3

n

)
, which is the com-

plexity of the alternative available methods.

2. TIME-UPDATING THE MIAA ALGORITHM
USING DATA INTERPOLATION

By supposing that all but the most recent sample, y(n), are ei-
ther given or have been replaced by some form of reconstruc-
tion estimates, the thus reconstructed data vector, ŷN (n), can
be expressed as

ŷN (n) =
[
ŷT
N−1(n− 1) y(n)

]T
(2)
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where y(n) denotes the most recent either given or missing
sample, and

ŷN−1(n− 1) = TN−1,N ŷN (n− 1) (3)

with
TN−1,N =

[
0N−1,1 IN−1

]
(4)

where 0k,1 and Ik denote a k × 1 zero and k × k identity
matrix, respectively. In the case that y(n) is actually given,
the time-recursive IAA estimate of ŷN (n) (which in this case
have all given or reconstructed samples) may then be formed
directly using the TR-IAA updating developed in [12], as

αn(ωk) =
fHN (ωk)R−1

N (n− 1)ŷN (n)

fHN (ωk)R−1
N (n− 1)fN (ωk)

(5)

Φn(ωk) = |αn(ωk)|2 (6)

RN (n) =

K−1∑
k=0

Φn(ωk)fN (ωk)fHN (ωk) (7)

where

fN (ωk) =
[

1 eωk . . . eωk(N−1)
]T

(8)

Alternatively, when y(n) is not available, the time-recursive
IAA estimate may instead be formed on only the available
N − 1 dimensional time window. In this case, the resulting
estimate may be obtained as

αn(ωk) =
fHN−1(ωk)R−1

N−1(n− 1)ŷN−1(n− 1)

fHN−1(ωk)R−1
N−1(n− 1)fN−1(ωk)

(9)

Φn(ωk) = |αn(ωk)|2 (10)

RN−1(n) =

K−1∑
k=0

Φn(ωk)fN−1(ωk)fHN−1(ωk) (11)

The current, missing, sample, y(n), should then also be inter-
polated from the previous estimates, which may be done using
the time-domain MIAA-t missing data interpolation method
proposed in [6], such that

ŷ(n) =

K−1∑
k=0

Φn(ωk)fHN−1(ωk)R−1
N−1(n)ŷN−1(n)eωk(N−1)

(12)
The resulting combined algorithm, hereafter termed the Time
Recursive Interpolation MIAA (TRI-MIAA) algorithm is con-
structed by the TR updating of (5)–(7) in the case when the
current sample is known, or by the TR updating of (9)–(12),
in the case when the sample is missing, noting that initializa-
tion should be performed by a complete MIAA-t step being
applied for spectral estimation and missing data interpolation.
In contrast to the FTR-MIAA algorithm introduced in [16],
where Mn ≤ N given samples are used at each time instant,
requiring the manipulation of non-structured matrices, and

thus resulting in a TR updating scheme with a complexity
of O

(
M3

n

)
operations per update, the proposed TRI-MIAA

time updating algorithm requires the estimation and the inver-
sion of (well-structured) Toeplitz matrices, formed using (7)
and (11), respectively. As a result, the proposed TRI-MIAA
spectral estimation algorithm allows for a fast implementation
along the lines of [11, 12, 15] where, thanks to the Toeplitz
structure of the involved data covariance matrices, the matrix
inverse products as well as trigonometric polynomials asso-
ciate to these matrix inverses may all be efficiently computed
exploiting the Gohburg-Semencul (GS) representation of the
involved Toeplitz matrices using the celebrated Levinson-
Durbin algorithm. However, the updating may be formed
even more efficiently by only exploiting and propagating the
displacement of RN (n) for both the representation of RN (n)
and RN−1(n). By keeping the required displacement gen-
erator vectors at a fixed size equal to N × 1, one avoids the
monitoring of the vector sizes and the then required up- or
down-dating for the case when the sample is given or miss-
ing, respectively, as well as allows for a lower complexity
approximative gradient-based or preconditioning conjugate
gradient (PCG) based updating of the displacement generator
vectors reminiscent to the ones developed in [14, 15]. With
this observation, we proceed to detail the resulting efficient
implementation.

3. EFFICIENT IMPLEMENTATION OF THE
TRI-MIAA ALGORITHM

The initialization of the proposed implementation exploits the
standard MIAA algorithm, which maybe implemented effi-
ciently as detailed in [12,13] at a cost ofm

(
M3

0 +K log2(K)
)

operations, where M0 is the number of the given data at the
first data block, ŷN (0), and m is the number of iterations
required for convergence (typically, m = 10 − 15 iterations
are adequate for the convergence of the MIAA algorithm).
In the case when the most recent sample, y(n), is given, the
spectral estimate and the updating of the covariance matrix
may be performed along the lines of [11,12,15], where it was
shown that RN (n) is a N ×N Toeplitz matrix which can be
extracted from an increased dimension circulant matrix as

K−1∑
k=0

Φn(ωk)fK(ωk)fHK (ωk) =

[
RN (n) ×
× ×

]
(13)

where × denotes terms of no relevance. Given the first col-
umn of RN (n), R−1

N (n) may be represented using a GS rep-
resentation of the form

R−1
N (n) = L

(
t1N (n)

)
LH

(
t1N (n)

)
− L

(
t2N (n)

)
LH

(
t2N (n)

)
(14)

where L (xN ) ,
[
xN ZNxN . . . ZN−1

N xN

]
is a Krylov ma-

trix, and ZN is the down shifting operator with ones on the
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diagonal below the main diagonal, and zeros elsewhere, and
where t1N (n) is the power normalized forward predictor de-
fined as

RN (n)t1N (n) = e1N

√
e1TN t1N (n) (15)

with e1N denoting a N × 1 vector with one in the first element
and zeros elsewhere, and where

t2N (n) = ZN

(
JNt1N (n)

)∗
(16)

with JN denoting the exchange matrix, and (·)∗ the complex
conjugate. Then, the TR spectral estimate may be computed
in terms of trigonometric polynomials as [11, 12, 15]

αn(ωk) =
ψn(ωk)

ϕn(ωk)
(17)

ψn(ωk) , fHN (ωk)dN (n) (18)
ϕn(ωk) , fHN (ωk)R−1

N (n− 1)fN (ωk) (19)

where dN (n) , R−1
N (n − 1)ŷN (n) is computed using

(14), whereas the coefficients of the trigonometric polyno-
mial ϕn(ωk) =

∑N−1
`=−N+1 c

`
ne

`ωk are computed in terms
of t1N (n − 1) and t2N (n − 1) as proposed in [18], without
the need of forming the matrix R−1

N (n − 1) explicitly, using
triangular Toeplitz matrix products of the formc

N−1
n

...
c0n

 = L(t1N (n− 1))DNt1∗N (n− 1)

−L(t2N (n− 1))DNt2∗N (n− 1) (20)

noting that c−`
n =

(
c`n
)∗

, and where DN is a N × N anti-
diagonal matrix of the form

DN =


0 . . . 0 1
0 . . . 2 0
...

...
. . .

...
N 0 . . . 0

 . (21)

In the alternative situation, when y(n) is missing, the effi-
cient implementation should instead be formed using a time
window of size N − 1. In order to avoid complicating the
updating by propagating both t1N (n) and t1N−1(n), as indi-
cated by (5)-(7) and (9)-(12), we here only make use of the
former, in conjunction with the rearrangement of the compu-
tation tasks required in the missing data case, by noting that

[
R−1

N−1(n) 0N−1

0T
N−1 0

]
= L

(
t1N (n)

)
LH

(
t1N (n)

)
− L

(
t̂2N (n)

)
LH

(
t̂2N (n)

)
(22)

where t̂2N (n) ,
(
JNt1N (n)

)∗
is used instead of (16), imply-

ing that

dN−1(n) , R−1
N−1(n− 1)ŷN−1(n− 1) (23)
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Fig. 1. Computational complexity per updating for the pro-
posed FTRI-MIAA algorithm and the TR-MIAA algorithm
implemented using [12,13], for 10% up to 70% missing data,
for a time window length varying from N = 128 up to
N = 1024, with the number of frequency points set equal
to K = 5N .

required by the spectral estimation recursions in the missing
data case can be computed as[

dN−1(n)
0

]
=

[
R−1

N−1(n− 1) 0N−1

0T
N−1 0

] [
ŷN−1(n− 1)

×

]
followed by a similar treatment for

d̃N−1(n) , R−1
N−1(n)ŷN−1(n− 1)

required by (12) for the reconstruction of missing sample. Fi-
nally, the coefficients of the trigonometric polynomial associ-
ated to R−1

N−1(n), required to form the spectral estimator part
in the missing data case,

ϕ̃n(ωk) , fHN (ωk)R−1
N−1(n− 1)fN (ωk) =

N−2∑
`=−N+2

c̃`ne
`ωk

are estimated asc̃
N−1
n

...
c̃0n

 = L(t1N (n− 1))DNt1∗N (n− 1)

− L(t̂2N (n− 1))DN t̂2∗N (n− 1) (24)

where it is noted that t̂2N (n− 1) is used instead of t2N (n− 1),
and that by construction the highest degree coefficient is al-
gebraically cN−1

n = 0. The computational complexity of the
resulting fast TRI-MIAA (FTRI-MIAA) algorithm is O(N2)
per updating. Figure 1 illustrates the resulting computational
speed-up as compared to the FTR-MIAA algorithm for vari-
ous levels of missing samples.
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Fig. 2. Time-recursive spectrograms are shown in the first
column as (a) TR-IAA on the complete data, (c) FTR-MIAA,
and (e) FTRI-MIAA, when 30% of the data are missing, and
(g) FTR-MIAA, and (i) FTRI-MIAA, when 60% of the data
are missing. Snapshots at time n = 14000 are shown in the
second column.
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Fig. 3. Time recursive spectral estimation using the DFT.
Spectrograms are shown in the first column as (a) TR-DFT
on the complete data, and (c) TR-DFT when 10% of the data
are missing. Snapshots at time n = 14000 are shown in the
second column.

4. SIMULATIONS

To evaluate the performance of the proposed algorithm, the
spectrum of a time-varying signal consisting of a mixtures
of two complex sinusoids with abruptly changing frequencies
and a complex-valued linear chirp with descending/ascending
linear frequency variations, being corrupted by an additive
zero-mean complex Gaussian noise (see [15] for a detailed
description of the signal) is computed using the DFT spec-
trogram, the FTR-MIAA algorithm [16], and the proposed
FTRI-MIAA algorithm. Figures 2 and 3 show the resulting
performance, with 2(a) giving the reference spectrogram as
obtained from the TR-IAA algorithm [15], given the com-
plete data set. Figures 2(c) and (e) show the FTR-MIAA and
FTRI-MIAA estimates, respectively, when 30% of the sam-
ples have randomly (with a uniform distribution) been omit-
ted from the signal. Similarly, Figures 2(g) and (i) show the
corresponding estimates when 60% of the samples are miss-
ing. Both cases clearly illustrate the similar performance of
the FTR-MIAA and the proposed algorithm. The computa-
tional complexities of the proposed method is here about 3%
and 12% of the complexity of the FTR-MIAA algorithm, re-
spectively. As a comparison, the DFT spectrogram is shown
in Figures 3(a) and (c) for the complete signal, and for the
case when 10% of the samples are missing, clearly illustrat-
ing the preferable performance of the IAA-based algorithms.
In the figures, the corresponding snapshots at time n = 14000
are presented in the second column.
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