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ABSTRACT

In this paper, we propose a novel estimation technique1 of the
power spectral density (PSD) of phase noise based on com-
plementary autocorrelation (CAC). Utilizing the fact that the
CAC of phase noise is nonzero, this technique offers a distinct
advantage that the PSD of phase noise is estimated while can-
celing other circular-symmetric noises. This property is most
useful when estimating phase noise directly from digitally-
modulated signals because they typically are accompanied by
various kinds of circular noises that easily mask the phase
noise of interest. A practical method to compute the phase
noise PSD is given. In addition, an expression for a noise
suppression factor of the method is given. Numerical simula-
tions demonstrate the effectiveness of the proposed method,
and verifies the noise suppression factor.

Index Terms— phase noise, complementary autocorrela-
tion, power spectral density, noise canceling

1. INTRODUCTION

Phase noise is random fluctuation in the phase of a signal, and
is often presented in the frequency domain using its power
spectral density (PSD). Since phase noise represents spectral
purity and frequency stability of a signal, it plays a crucial role
in evaluation of radio-frequency and microwave oscillators. A
variety of methods are known for a long time [1][2].

In communication systems, phase noise degrades the per-
formance through various mechanisms. Among today’s digi-
tal modulation schemes, the impact of phase noise is more no-
ticeable and serious in the OFDM systems. Since in OFDM
many subcarriers are placed with a narrow frequency spacing,
those subcarriers are susceptible to intercarrier interference
(ICI) induced by phase noise [3], for which various compen-
sation schemes are considered [4][5]. Thus, accurate estima-
tion of phase noise in oscillators is extremely important when
designing and characterizing OFDM systems.

It is convenient if oscillator phase noise can be estimated
directly from modulated signals because, especially in small

1Patent pending (US)

systems such as hand-held devices, oscillator outputs are typ-
ically not accessible. Indeed, such direct estimation methods
are found in literature [6]. However, since modulated signals
are typically accompanied by various other kinds of noises
related to the generation, propagation and reception of them,
the phase noise of oscillators is easily masked. This disables
the use of the existing methods in noisy settings.

In this paper, to overcome the difficulty, we propose a
novel phase noise estimation technique using the complemen-
tary autocorrelation (CAC). The CAC of circular-symmetric
complex noise is zero; however, since the oscillator phase
noise is a phase-domain signal, its CAC is nonzero. This
property has been utilized to develop the new estimation tech-
nique. Under some mild conditions, the technique can ap-
proximately estimate the PSD of only phase noise while sup-
pressing most (quasi) circular-symmetric noises that accom-
pany the modulated signals, which include additive noises in-
duced by linear distortion of paths, IQ imbalances, and addi-
tive spurious signals. To the best of the author’s knowledge,
this is the only estimation technique being capable of extract-
ing and estimating the phase noise PSD.

The unmodulated signal case is treated first, then the re-
sult is extended onto the modulated case. A possible practical
method is presented based on the complementary spectral
density, for which a theoretical suppression factor of circular
noises is presented. In addition, since not all modulation-
induced noises are circular, reducibility of them are studied
briefly. Numerical simulation demonstrates the proposed
method, and verifies the noise suppression factor.

2. COMPLEMENTARY AUTOCORRELATION

Let a discrete-time complex random signal be denoted as
z(n). Assuming z(n) is wide-sense stationary (WSS), the
(ordinary) autocorrelation of z(n) at the lag k is defined as

rz(k) = E[z(n)z∗(n− k)], (1)

where E[·] denotes the mathematical expectation. The com-
plementary autocorrelation (CAC) of z(n) is defined as

cz(k) = E[z(n)z(n− k)], (2)
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which appears to be the non-conjugate version of rz(k). The
CAC has the general property that, for a circular-symmetric
signal, its CAC is zero, cz(k) = 0, for all k. In addition, for a
particular case when z(n) is expressed as

z(n) = u(n)ejφ, (3)

where u(n) is a real random process and φ ∈ [0, 2π) is a
known deterministic phase offset, from (1) and (2), the fol-
lowing equality holds:

cz(k) = rz(k)e
j2φ. (4)

From this relation, we see that, for z(n) having the form as in
(3), the autocorrelation rz(k) can be obtained by calculating
the CAC. This simple relation is the basis of the following
developments in this paper.

3. SPECTRAL ESTIMATION OF PHASE NOISE

The unmodulated signal case is discussed first, then the re-
sult is extended onto the modulated case. For discussion in
this section, phase noise is treated as a zero-mean, wide-sense
stationary (WSS) process, to present the idea cleanly.

3.1. Unmodulated signal case

Letting the phase noise be denoted by θ(n) ∈ R, we consider
an unmodulated signal x(n) ∈ C having the simple form:

x(n) = ejθ(n) + v(n), (5)

where v(n) ∈ C is a circular-symmetric noise signal uncor-
related with θ(n). Assuming that |θ(n)| is sufficiently small,
the first term in (5) can be approximately written as jθ(n)+1.
Thus, defining a new signal as y(n) = x(n) − 1, it follows
that

y(n) ≃ jθ(n) + v(n). (6)

The CAC of y(n) is calculated as

cy(k) = E[y(n)y(n− k)]

≃ −cθ(k) + cv(k)

= −rθ(k). (7)

To obtain the third equality, since θ(n) is real, the relation (4)
is used (corresponding to the case of φ = 0), and the fact that
v(n) is circular-symmetric. We see from (7) that the CAC
of y(n) is approximately equal to the autocorrelation of θ(n)
multiplied by −1, and the noise effects are canceled out.

Since the PSD is defined as the discrete-time Fourier
transform of an autocorrelation, the PSD of the phase noise
θ(n) can then be estimated approximately as,

Pθ(ω) ≃ −
∞∑

k=−∞

cy(k) e
−jωk, (8)

where the effects of v(n) are completely suppressed.
The IEEE standard 1139 [7] recommends reporting the

phase noise spectrum using the quantity defined as L (f).
Letting the sampling rate be denoted by T , the relation be-
tween the two can be written as

L (f) =
1

T
Pθ(2πfT ). (9)

Also used frequently is the quantity known as the one-sided
PSD of phase noise, customarily denoted as SI(f) [8], which
relates to Pθ(ω) as

SI(f) =
2

T
Pθ(2πfT ). (10)

3.2. Modulated signal case

We now discuss the modulated signal case in which the base-
band symbols s(n) ∈ C are circular-symmetric. The follow-
ing observation model at the baseband is considered:

x(n) = As(n)ejθ(n) + v(n), (11)

where A ̸= 0 denotes a complex gain. For an idealized co-
herent receiver, the symbols and the gain can be recovered
exactly. Thus, we can treat s(n) and A as known quantities.
Under the assumption that s(n) ̸= 0, we redefine the new
signal y(n) by removing modulation from x(n) as

y(n) =
x(n)

As(n)
− 1. (12)

Inserting (11) into (12) with the approximation jθ(n) + 1 for
sufficiently small |θ(n)| gives

y(n) ≃ jθ(n) + v′(n), (13)

where v′(n) = v(n)/(As(n)). Since s(n) is assumed to be
circular-symmetric, so is v′(n). This enables the same treat-
ment of (13) as the unmodulated case, that is, the phase noise
PSD can be obtained by (8).

For the modulated signal case, there are several points that
need special attention. The assumption s(n) ̸= 0 is easily
violated in practice (e.g., OFDM signals), which calls for a
special treatment of those points. Furthermore, since the vari-
ance of v′(n) is generally different from that of v(n), noise
enhancement can occur depending on the probability density
distribution of s(n). These two points pose us a performance
trade-off between the noise enhancement and estimation bias,
which is not detailed in this introductory conference paper.

3.3. Reducibility of modulation-induced noise

In modulated signals, while most modulation-induced noises
are circular-symmetric, there exist others that are noncircular.
Noncircular noises are irreducible by taking CAC. Thus, it is
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important to inspect reducibility of each kind of noise associ-
ated with the corresponding noise-inducing mechanism.

We first consider linear distortion. Linear distortion is
modeled by a linear filter and, in wireless communication sys-
tems, accounts for nonideal path responses (amplitude non-
flatness and phase nonlinearity), nonideal transmission filter
(truncation of coefficients, etc.), timing misalignment in the
receiver, and the multipath effects, to name a few. Under
linear distortion, the observation, denoted as xld(n), can be
written as

xld(n) = A
∞∑
l=0

h(l)s(n− l)ejθ(n−l), (14)

where {h(l)} are the filter coefficients. Let h(0) = 1 then
y(n) in (12) takes the form

y(n) ≃ jθ(n) + vld(n), (15)

where

vld(n) =
∞∑
l=1

h(l)
s(n− l)

s(n)
ejθ(n−l). (16)

For nonzero circular {s(n)}, vld(n) can be shown to be cir-
cular. Thus, we see that all the effects due to linear distortion
can be canceled out by taking the CAC.

Similar analysis reveals that the effects of additive col-
ored noise, additive line spectra (complex exponentials), and
the IQ origin offset can be also canceled out. For IQ im-
pairments including IQ gain imbalance and quadrature skew,
another analysis shows that the reducibility depends on the
modulation scheme. Nonlinear distortion can be shown to be
irreducible in general.

4. PROPOSING A PRACTICAL METHOD

In practice, phase noise is not zero-mean or WSS though
assumed so in Section 3, which disables direct use of the
equations there. However, if a long sequence is segmented
with the mean subtracted, the phase noise in each segment
is approximately a zero-mean WSS process. This suggests a
frequency-domain method based on the discrete Fourier trans-
form (DFT) of each segment. Thus, the proposed method
takes a basic form of the complementary version of Welch’s
method (Periodogram averaging over overlapped segments).

Based on the signal model (11), the modulation-removed
version of x(n) is obtained by

x̃(n) = x(n)/(As(n)). (17)

Segmentation is done in such a way that its i-th, length-L
segment is given by x̃(l + iD), l = 0, . . . , L− 1, where D is
the inter-segment offset. The segment DFT of the phase noise
is approximately obtained by

Θi(k) ≃
L−1∑
l=0

w(l)
{
x̃(l + iD)e−jϕ̄i − 1

}
e−j 2π

L kl, (18)

for k = 0, . . . , L−1, where ϕ̄i is the phase average in the i-th
segment defined by

ϕ̄i =
1

L

L−1∑
l=0

arg{x̃(l − iD)}, (19)

with arg{·} representing the complex angle. Window w(l)
is optional. The phase noise PSD is approximately obtained
by averaging the complementary spectral density over all seg-
ments, as

Pθ(k) ≃
1

KLU

∣∣∣∣∣
K−1∑
i=0

Θi(k)Θi(L− k)

∣∣∣∣∣ , (20)

where K is the number of segments, and

U =
1

L

L−1∑
l=0

w2(l). (21)

The suppression factor of the additive circular-symmetric
noise by the above-proposed method has been derived assum-
ing the Gaussian distribution. Just to show the result, it is

FS = 2
√
K/π, (22)

for the case of D = L (0% overlapping).

5. SIMULATIONS

Estimation of the phase noise PSD and suppression of other
modulation-induced noises using the proposed method are
demonstrated by numerical simulations for two different kind
of modulation schemes, 8PSK and Gaussian. For the both
schemes, N = 105 symbols s(n), n = 1, . . . , N are gen-
erated, which are then corrupted by phase noise θ(n) and
the circular noise v(n) to construct the observations x(n)
as in (11). To generate v(n), we consider such impairments
as the IQ gain imbalance, IQ quadrature skew, IQ origin
offset, linear distortion (nonflat gain and nonlinear phase),
and AWGN. Each of these factors are balanced so that they
all have approximately equal contribution to the total noise
power. The signal x̃(n) in (17) is segmented into L = 500
unoverlapped segments, thus, there are K = N/L = 200 seg-
ments, for which the suppression factor becomes FS = 15.96
or 10 logFS = 12.03 (dB).

Fig. 1 shows the results with an 8PSK-modulated signal.
The bottom trace is the PSD of the true phase noise with a line
spectrum at the frequency of 0.25 (normalized to the sam-
pling rate). The overall PSD, the top trace, includes contri-
butions of both the phase noise and the additive modulation-
induced noise v(n). Our task is to extract and estimate only
the phase noise PSD by using the proposed method. The re-
sultant estimate of phase noise PSD is the middle trace. The
true phase noise PSD is recovered well in frequencies up to
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Fig. 1. Estimation of phase noise PSD of an 8PSK-modulated
signal by suppressing other circular-symmetric noises.

0.2 or so. In addition, the amount of circular noise suppres-
sion seems to roughly agree with the theoretical suppression
factor, FS = 12.03 (dB), because for this simulation v(n) is
composed of only circular noises and is expected to follow
the theory. The line spectrum successfully remains, and it
now can be observed much more cleanly.

The results with a Gaussian-modulated signal are shown
in Fig. 2. The Gaussian modulation generally represents well
a CDMA signal with more-than-a-few active channels and an
OFDM signal. Here it must be noted that the noise enhance-
ment does occur in the calculation v′(n) = v(n)/s(n) as
mentioned in Section 3.2 because, in a Gaussian modulation,
many symbols are located near the origin causing division by
near-zero values. To get around the issue, in this simulation,
for points {s(n) | |s(n)| < 0.1σ2

s , σ2
s = E[|s(n)|2}, the cor-

responding {v′(n)} are generated not by the division, but by
interpolating nearby points. The amount of noise enhance-
ment by this relief scheme can be roughly estimated at 5dB
by visually inspecting two top traces in Fig. 1 and 2 at fre-
quencies > 0.3.

6. CONCLUSIONS

Estimation of the PSD of phase noise based on the comple-
mentary autocorrelation is presented. It offers the distinct
advantage to extract phase noise while suppressing circular-
symmetric noises induced by modulated signals. A practi-
cal method is presented based on the complementary spectral
density with a theoretical expression of suppression factor.
Numerical simulations demonstrate the idea, and confirms the
noise suppression factor.
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Fig. 2. Estimation of phase noise PSD of a Gaussian-
modulated signal by suppressing other circular noises.
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