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ABSTRACT

Real time imaging radar requires short dwell time and low hardware
complexity, limiting the application of many existing radar modula-
tion methods. In this paper, we propose a novel Successive Multiple
Frequency Continuous Wave (S-MFCW) modulation scheme to ad-
dress these challenges. The S-MFCW signal model is formulated
and the impact of noise is analyzed, leading to a very short dwell
time and narrow signal bandwidth with excellent range and speed
accuracy. From the numerical simulation of an automotive radar ex-
ample, we show that S-MFCW achieves comparable range and speed
performance, but orders of magnitude lower requirements on dwell
time and bandwidth compared to the commonly used FMCW radar.

Index Terms— Radar signal processing, millimeter wave radar,
radar interferometry

1. INTRODUCTION

Real time scanning surveillance radar systems can be used in many
commercial applications, such as automotive radar [1] and human
feature extraction [2]. Typical scanning radars often operate under
the constraint of only a limited number of pulses, thus real time
estimation and detection of radar targets are quite difficult due to
short dwell time (i.e., the time that an antenna beam spends on a tar-
get). Moreover, as modern radar systems are becoming increasingly
sophisticated, systems with low hardware complexity and low cost
while still achieving comparable high range and speed accuracy and
high resolution are in strong demand.

For modern radars, frequency or phase modulation is normally
needed to achieve desired radar performance. For example, the Fre-
quency Modulated Continuous Wave (FMCW) technique is widely
used due to its good range and velocity resolution [3, 4, 5]. How-
ever its resolution is inversely proportional to the signal bandwidth
and it requires a long sampling window, hence a long dwell time, to
complete a range measurement. Furthermore, FMCW radars usually
use Fast Fourier Transform (FFT) to estimate Doppler frequencies,
which results in high hardware complexity and high power consump-
tion. The Multi Frequency Continuous Wave (MFCW) is another
modulation scheme that continuously transmits multiple frequency
tones in parallel with each other [2, 6, 7]. The phases of the returned
signals are compared to obtain a range estimate. This technique al-
lows a really short dwell time and a very small signal bandwidth.
However, one transceiver is needed for each frequency tone, making
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Fig. 1. S-MFCW transmitted and received signals with a sequence
of frequency tones f1, · · · , fN . T is the pulse width.

the MFCW radar very costly in implementation and not suitable for
large scale phased array integration.

Prior work on radar modulation schemes such as the above
mentioned FMCW and MFCW still face the challenges of balanc-
ing trade-offs of excellent radar performance against high hardware
complexity and cost. To address this issue, in this paper we propose
a new Successive-MFCW (S-MFCW) modulation scheme suitable
for high speed radar estimation and detection and large scale integra-
tion for phased arrays. Unlike the typical MFCW modulation, the
S-MFCW method sequentially transmits selected frequency tones
from the same transceiver. Thus it results in comparable dwell time
and signal bandwidth to the MFCW method, while drastically re-
ducing the hardware complexity and enabling its use in large phased
array systems. Although the successive transmission of the tones
imposes constraints on the system performances such as range and
velocity ambiguity, custom tone sequences can be devised for prac-
tical applications. Finally, the numerical simulation of a 77 GHz
automotive radar is used as an example to verify the performance
and noise impact of the proposed scheme.

2. SUCCESSIVE-MFCW SIGNAL MODEL

2.1. Signal Model

The transmitted S-MFCW signal consists of a sequence of N fre-
quency tones (f1, · · · , fN ) each with a pulse width of T (see Fig. 1
for illustration) and can be modeled as

s(t) =

N∑
i=1

exp(j2πfit+jϕi(t)) ·rect[(t−(2i−1)T/2)/T ], (1)

where the rectangular function is given by

rect(t) =

 0, |t| > 0.5
0.5, |t| = 0.5
1, |t| < 0.5

(2)
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and ϕi(t) represents the initial random phase noise of each tone. The
i-th transmitted signal at frequency fi is reflected from the target
and detected by the receiver after a delay starting at t = ∆ti =
∆t((i − 1)T ). Let’s consider a target located at the beginning of
the measurement at a distance R, and moving in the direction of the
radar beam at a constant speed v. The speed is considered positive if
the target moves away from the radar. Thus, because the transmitted
signal is an exponential function, we can find a delay that includes
the doppler contribution in the form:

∆t(t) = 2 · (R+ v · t)/c, (3)

where c is the speed of light. Then the returned signal at the receiver
antenna is:

r(t) = A · s(t−∆t(t)) + n(t)

=
N∑
i=1

{A · exp[j2πfi(t−∆t(t)) + jϕi(t−∆t(t))]

+ ni(t)} · rect[(t−∆ti − (2i− 1)T/2)/T ],

(4)

where A represents the propagation and reflection losses and n(t)
is the additive Gaussian noise. A has been assumed constant for
each tone because we are going to consider a narrowband system
(f1 ≈ f2 ≈ · · · ≈ fN ). We assume that n(t) can be decomposed
into N independent components, with ni(t) referring to a white
bandpass Gaussian random process with zero mean and variance σ2

due to signal return from the i-th tone. The received signal r(t) will
undergo processing to extract the phase information for range and
speed estimation. To that end, the received signal is multiplied by
the transmitted signal for demodulation, i.e., r(t)∗ · s(t), where (·)∗
is the phase conjugation, followed by a low-pass filter, yielding the
post-processed signal

u(t) =

N∑
i=1

{
[A · exp(j2πfi∆t(t)) + n′

i(t)]

· rect
[
t− (∆ti + T )/2− (i− 1)T

T −∆ti

]}
.

(5)

n′
i(t) follows a Gaussian distribution with zero mean and variance
σ2. We note that the ϕi(t) contribution disappears because the re-
ceived phase noise is correlated to the transmitted phase noise [8].
From (5), we note that for each tone the received signal can be sam-
pled only during the period of overlap between the transmitted and
received signals (see the overlapped intervals in Fig. 1). To analyze
the impact of the noise, we further model the noise for the i-th fre-
quency tone as

n′
i(t) = αi(t)exp[jψi(t)], (6)

where αi(t) denotes the envelop of the noise and follows a Rayleigh
distribution, while ψi(t) represents the phase of the noise and has
a uniform distribution within [0, 2π]. Next, we define the phase of
each tone of the post-processed signal without noise as:

Φi(t) = 2πfi∆t(t). (7)

Then, inserting (6) and (7) into (5), we obtain

u(t) =

N∑
i=1

{
[A exp(jΦi(t)) + αi(t)exp(jψi(t))]

· rect
[
t− (∆ti + T )/2− (i− 1)T

T −∆ti

]}
.

(8)

Hence, the phase of the i-th frequency tone of the received signal
can be derived as [6]:

Φ̂i(t) = Φi(t) + phase {A+ αi(t) · exp[j(ψi(t)− Φi(t))]}

u Φi(t) + tan−1

{
αi(t) · sin[ψi(t)− Φi(t)]

A+ αi(t) · cos[ψi(t)− Φi(t)]

}
u Φi(t) +

wi(t)

A
,

(9)

where

wi(t) = αi(t) · sin[ψ′
i(t)], (10)

ψ′
i(t) = ψi(t)− Φi(t). (11)

ψ′
i(t) has a uniform distribution between [0, 2π]. So wi(t) follows

a Gaussian distribution with zero mean and variance σ2. We note
that in the derivation of (9), we use the approximation tan−1(x) ≈
x under the assumption that A ≫ αi(t) · cos(ψ′

i(t)) and A ≫
αi(t) · sin(ψ′

i(t)). The approximations correspond to assuming ei-
ther a medium or a high signal to noise ratio. Next, let fs denote the
sampling rate during the overlap interval (i− 1)T +∆ti ≤ t ≤ iT ,
the number of samples is given by:

Ns = (T −∆ti) · fs. (12)

Hence the average of the phase of the i-th tone during the overlap
interval can be calculated by:

Φ̄i =
1

Ns
·

Ns∑
k=1

Φ̂i(∆ti + (i− 1)T + (k − 1)/fs)

= 4πfi
R

c
+ 2πfi

v

c

[
∆ti + (2i− 1)T − 1

fs

]
+
w̄i

A
,

(13)

where w̄i is the average of the noise during the overlap interval for
the i-th tone and follows a Gaussian distribution with zero mean and
variance σ2/Ns. Since ∆ti depends on the range and the speed of
the target, it cannot be known in advance and it changes at every
tone. To deal with this problem, we define a fixed start time for
the sampling window of the return signal based on a pre-determined
maximum range Rmax so that:

∆tmax = 2Rmax/c ≥ ∆ti. (14)

Using ∆tmax instead of ∆ti, (13) becomes:

Φ̄i(t) = 4πfi
R

c
+ 2πfi

v

c

[
∆tmax + (2i− 1)T

− 1

fs

]
+
w̄i

A
= Φ̃i(t) +

w̄i

A
,

(15)

where Φ̃i(t) is the average of the phase without noise:

Φ̃i(t) = 4πfi
R

c
+ 2πfi

v

c

[
∆tmax + (2i− 1)T − 1

fs

]
. (16)

2.2. Range and Speed Estimation

In this section, we present the algorithm for range and speed estima-
tion. Let’s first consider the case where noise is absent. We let t̄i
denote the average delay for the i-th tone,

t̄i =
Φ̃i(t)

2πfi
= 2

R

c
+
v

c

[
∆tmax + (2i− 1)T − 1

fs

]
, (17)
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Using two different tones i and j we could calculate

t̄i − t̄j = 2v(i− j)T/c. (18)

Then from (18) we could calculate the speed as:

v =
c(t̄i − t̄j)

2(i− j)T
=

c

2(i− j)T
· fj · Φ̃i − fi · Φ̃j

fi · fj
. (19)

However we should note that the phase measurement is wrapped.
The phase constraint Φ̃i ≤ 2π must be imposed in order to avoid
ambiguous estimation of speed and range. This requirement appears
too stringent, because it would make the maximum unambiguous
range be λ/2. Therefore, based on (16), we use the phase difference
defined as follows:

∆Φ̃ij = Φ̃i − Φ̃j = 4π
R

c
(fi − fj)

+ 2π
v

c

(
∆tmax − 1

fs

)
(fi − fj)

+ 2π
v

c
T [(2i− 1)fi − (2j − 1)fj ] ,

(20)

which yields to a more relaxed constraint ∆Φ̃ij ≤ 2π. This makes
the maximum range in case of v = 0 to be:

Rmax = c/[2(fi − fj)]. (21)

Since (20) has two unknowns R and v, we need two different equa-
tions in order to solve the system. This implies that we need two sets
of ∆Φ̃ij with two different fi − fj . It suffices to use three frequen-
cies fi, fj and fk to meet this requirement. Furthermore, to simplify
the solution of the system, we choose two of the tones having equal
frequencies, i.e., fi = fj . In this case (20) becomes:

∆Φ̃ij = Φ̃i − Φ̃j = 4πvTfi(i− j)/c. (22)

Thus the speed can be calculated as:

v =
c(Φ̃i − Φ̃j)

4π(i− j)Tfi
. (23)

In order to determine if the target is moving with a positive or a neg-
ative speed relative to the radar beam direction, we need to consider
∆Φ̃ij in the interval [−π, π]. Using the value of π to replace ∆Φ̃ij

in (23) as the maximum difference in phase, we can calculate the
maximum detectable speed:

vmax = c/[4(i− j)Tfi]. (24)

Since the speed has been calculated using the tones i and j (fi = fj),
the range can be derived from (20) using the tones j and k (fj ̸= fk).
In this case the phase has to be considered in the interval [0, 2π].
Thus we obtain

R =
c(Φ̃j − Φ̃k)

4π(fj − fk)
− v

2

(
∆tmax − 1

fs

)
v

2
T

[
(2j − 1)fj − (2k − 1)fk

fj − fk

]
.

(25)

In reality, the noise on the measurement must be considered. It is
straightforward to calculate the speed in the presence of noise. Re-
placing ∆Φ̃ij in (23) by ∆Φ̄ij , we obtain

v̂ =
c(Φ̄i − Φ̄j)

4π(i− j)Tfi
= v +

c

4π(i− j)Tfi

·
( w̄i − w̄j

A

)
= v +

c

4π(i− j)Tfi
· w̄v

A
,

(26)

where w̄v follows a Gaussian distribution with zero mean and vari-
ance 2σ2/Ns, and it is defined as:

w̄v = w̄i − w̄j . (27)

Similarly, by (25) we obtain the range estimation in the presence of
noise as follows:

R̂ =
c(Φ̄j − Φ̄k)

4π(fj − fk)
− v̂

2

(
∆tmax − 1

fs

)
− v̂

2
T

[
(2j − 1)fj − (2k − 1)fk

fj − fk

]
.

(28)

Since fi is the carrier frequency, we can assume fi ≈ fj ≈ fk and
(28) can be simplified as

R̂ = R+
c

4π(fj − fk)
·
{
w̄j − w̄k

A
− w̄v

A

·
[
1

2

(
∆tmax − 1

fs

)
· fj − fk
(i− j)Tfi

+
j − k

i− j

]}
= R+

c

4π(fj − fk)
· w̄R

A
, (29)

w̄R = w̄j − w̄k − w̄v ·
[
1

2

(
∆tmax − 1

fs

)
· fj − fk
(i− j)Tfi

+
j − k

i− j

]
. (30)

where w̄R follows a Gaussian distribution with zero mean and vari-
ance:

σ2
w̄R

=
2σ2

Ns

{
1 +

[
1

2

(
∆tmax − 1

fs

)
· fj − fk
(i− j)Tfi

+
j − k

i− j

]2}
.

(31)

From (26) and (29), the error on the speed and range measurement
due to noise can be calculated as:

verr = v̂ − v =
c

4π(i− j)Tfi
· w̄v

A
, (32)

Rerr = R̂−R =
c

4π(fj − fk)
· w̄R

A
. (33)

Thus, we obtain the expression for the error variance of the speed
and range estimation, respectively as follows:

σ2
verr =

(
c

4π(i− j)Tfi

)2

· 1

Ns
· 1

SNR
(34)

σ2
Rerr

=

(
c

4π(fj − fk)

)2 {
1 +

[
1

2

(
∆tmax − 1

fs

)
· fj − fk
(i− j)Tfi

+
j − k

i− j

]2}
· 1

Ns
· 1

SNR
, (35)

where SNR = A2/(2σ2). Equations (34) and (35) reveal that a
large number of samples and a high SNR will reduce the error both
on the speed and range estimation. A high carrier frequency and a
long pulse width are necessary to reduce the noise variance on the
speed. However, a reduction of noise variance comes with a trade
off with the maximum detectable speed based on (24). Furthermore,
(26) and (29) show that both the speed and the range are determin-
istic unknowns with additive Guassian noise of zero mean. Hence,
the maximum likelihood estimator (MLE) is the optimum unbiased
estimator to obtain the estimates for speed and range. So the error
variances that are given in (34) and (35) achieve the classic Cramer-
Rao lower bound [9].
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Fig. 2. Proposed sequence of frequency tones for the S-MFCW
radar.

Table 1. Simulation Parameters, Results and Comparisons.

S-MFCW FMCW

Target Maximum Distance 150 m 112 Km

Target Maximum Speed 46 m/s 606 m/s

Target Initial Distance 120 m 120 m

Target Speed -30 m/s -30 m/s

Target Cross Section 3 m2 3 m2

Carrier Frequency 77 GHz 77 GHz

∆fAB 1 MHz N/A

∆fBC 21 MHz N/A

Bandwidth 22 MHz 700 MHz

Tone Period (T ) 24 µs N/A

Dwell Time (DT ) 96 µs 1.5 ms

Samples (Ns) 23 N/A

FFT Points N/A 2048

Sampling Rate (fs) 1 MHz 3 MHz

SNR 15 dB 15 dB

σ2
verr 0.232 (m/s)2 0.23 (m/s)2

σ2
Rerr

35.5 cm2 35 cm2

3. EXAMPLE AND SIMULATION RESULTS

To demonstrate the performances of the proposed S-MFCW modula-
tion, we use the design configuration and requirements of a 77 GHz
automotive radar given in [3]. As derived in (21), a small frequency
difference between the transmitted tones is required to obtain a long
maximum unambiguous range. Meanwhile a large frequency differ-
ence is required to obtain a small variance of the range estimation er-
ror, as shown in (35). Hence the requirements for a maximum range
and for a small variance of the range error are contradicting each
other. This can be mitigated if a three-different-frequency (fA, fB
and fC ) tone sequence is utilized as follows. fB can be chosen to
be very close to fA, while fC has to have a much larger separation
from fA and fB . Then the range estimations derived from the two
pairs (fA, fB) and (fB , fC ) can be combined to obtain the supe-
rior performance: the first pair determines the maximum range and
the second pair determines the variance of the range error. To es-

timate the speed of the target, two tones having equal frequencies
are needed (see Section 2), so the proposed S-MFCW tone sequence
is depicted in Fig. 2 and is repeated every time a measurement is
completed. The resulting dwell time for one range measurement is
DT = 4T .

A Matlab simulation model is used to validate the proposed S-
MFCW radar modulation and compare it to a typical FMCW radar
as in [3]. For both radars the time domain simulation uses dense
sampling to generate the high frequency waveforms, while uses the
respective sample frequency (Table 1) for the baseband signals. The
Phased Array Toolbox has been used to generate and receive the
waveform signals as well as to emulate the propagation and reflec-
tion on the target. The scenario is taken from the long range automo-
tive radar. First the FMCW radar has been simulated using the same
system parameters as in [3] (see Table 1). The variance on the speed
and range error over 500 measurements has been simulated to be
respectively 0.23 (m/s)2 and 35 cm2. Then we used the equations
developed in Section 2 to obtain the S-MFCW parameters that would
give the same variance on the speed and range errors (see Table 1).
To obtain the desired result, first we estimate the speed using (26)
on the pair of tones using the same frequency fA. Then, two range
estimations are calculated using (28). A coarse range (Rcoarse) is
determined by the close spaced frequency pair (fA, fB) of tones 2
and 3. While a fine range (Rfine) is determined by the far spaced
frequency pair (fB , fC ) of tones 3 and 4. Next, the integer n that
solves the equation

n = argmin
n

(Rcoarse −Rfine − n ·Rmax,34) (36)

must be found, whereRmax,34 represents the maximum range calcu-
lated using the 3-rd and 4-th tones. Finally the accurate target range
can be found as:

Rfinal = n ·Rmax,34 +Rfine. (37)

Using the presented sequence of tones and reconstruction method,
the target can be detected at the maximum range set by the difference
between fA and fB , with the error set by the difference between fB
and fC . From the simulation results, the variance on the speed and
range errors over 500 measurements are respectively 0.232 (m/s)2

and 35.5 cm2. They are in good agreement with the expected ana-
lytical results of 0.23 (m/s)2 and 35 cm2.

From simulation, we demonstrated that both S-MFCW and
FMCW can detect targets that meet the long range automotive radar
requirements. FMCW could detect targets even at a much longer
distance (maximum distance in Table 1). But the S-MFCW modula-
tion requires a much smaller bandwidth, a much shorter dwell time
and does not need FFT. FFT is very area and power consuming. So
not requiring FFT is a hardware advantage especially for large scale
integration, like phased arrays. As shown in Table 1, S-MFCW uses
a bandwidth 32 times smaller and it is 15.6 times faster than the
FMCW radar. These advantages enable S-MFCW to be a viable
modulation scheme for real time imaging radar applications that
often require short dwell time and low hardware complexity.

4. CONCLUSIONS

In this paper we have proposed a novel modulation technique that
allows fast radar detections with narrow bandwidth requirements.
The new modulation method has been validated through Matlab
simulations and compared to a FMCW radar. Simulation results
demonstrate that the proposed S-MFCW modulation achieves sig-
nificantly lower system requirements while providing comparable
performance for range and speed estimation to a FMCW radar.
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