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ABSTRACT
Simultaneous EEG-fMRI recording provides great oppor-
tunity to study the relationship between synchronous neu-
ronal activity in EEG and blood oxygenation level dependent
(BOLD) in fMRI. In this paper a novel semi-blind technique
using PARAFAC2 is proposed to investigate the correlation
between post-movement beta rebound (PMBR) in beta band
and BOLD. In this method, the instantaneous power of EEG
in beta band representing the PMBR is calculated and used
as a constraint for PARAFAC2 to detect the fMRI voxels ac-
tivated during PMBR. The results confirm that the proposed
method effectively detects the area in the brain which is re-
sponsible for beta rebound. The results are compared with
those of general linear model (GLM) that completely relies
on the predefined fMRI time-course.

Index Terms— Simultaneous EEG-fMRI, Post-movement
beta rebound, PARAFAC2

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a neu-
roimaging technique which measures the blood oxygen level
dependent (BOLD) in the brain [1]. During fMRI experi-
ment, the whole brain is scanned at high spatial resolution
of the order of millimeter. However, fMRI has low temporal
resolution, which is of the order of seconds. In contrast to
fMRI, electrocardiogram (EEG) is able to record the external
electrical potential in order of milliseconds [2]. The main
unresolved problem of EEG is recovering sources of neu-
ronal activity inside the brain due to low spatial resolution.
Fusion of EEG and fMRI can therefore compensate for the
existing shortcomings of each technique and provides a more
comprehensive understanding of the neural activities.

Current approaches for EEG-fMRI integration are divided
into two main groups: model driven and data driven methods.
Computational biophysical model is the basis of model driven
approaches [3]. In these methods, the assumptions about the
neural activities are used to model the relation between EEG
and fMRI. The demands for the application of model driven
methods is decreased due to lack of knowledge about the neu-
ronal substrates [3]. Data driven approaches are based on
common interactions between EEG and fMRI. These tech-
niques are classified into two main categories. In the first cat-
egory, the fMRI active map obtained from fMRI analyzer is
used as a priori information for electromagnetic source local-
ization. Generally the number of EEG sensors is smaller than
the number of sources within the brain, so the EEG inverse
problem is underdetermined and ill-posed. Therefore, addi-
tional constraints or a priori information are always needed to
obtain a unique and stable solution for localization of sources
in EEG. The second category refers to incorporation of EEG
features as additional regressors or constraints for fMRI an-
alyzer frameworks. The main objective of these techniques
is exploring the correlation between the fMRI time-series and
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event-related potentials (ERPs) or EEG rhythm oscillations.
The main superiority of these algorithms is the ability to di-
rectly use neural responses (measured by EEG) instead of us-
ing regressors relying only on the timing of the stimuli. One
of the best examples is to investigate the interictal and ictal
epileptic activity for localizing epileptic foci and characteriz-
ing the relationship between epileptic activity and the hemo-
dynamic response [4, 5]. Horovitz et al. [6] investigated the
neural activations underlying the brain rhythm modulations in
the rest or pathological brain. Formaggio et al. [7] studied
the correlation between the changes of µ rhythm and BOLD
signal peak. In all of these works, the regressors are derived
from the power of a specific frequency band. Then, the ob-
tained regressors are used by GLM to detect the voxels con-
sidered as the source of neural responses reflected in ERPs or
EEG rhythm oscillations. GLM is one of the most common
fMRI analysis techniques known as model-based algorithm.
However, GLM only relies on the predefined regressor based
stimulus onset times or derived information from EEG to de-
tect active voxels in collected fMRI.

In this work, we propose a technique based on blind source
separation (BSS) to fuse EEG and fMRI. In contrast to GLM,
BSS algorithms are model-free and are able to detect active
voxels inside the brain without relying on any predefined re-
gressor. However, their performances can be improved and
tuned to detect an specific output using a constraint. On the
other hand, adding constraint to BSS techniques results in
a semi-blind algorithm which bridges between model-based
and model-free approaches. Various BSS algorithms such as
independent component analysis (ICA) or non-negative ma-
trix factorization have been used for fMRI analysis [8, 9]. In
this work, we use PARAFAC2 which is an extension of par-
allel factor analysis (PARAFAC) for this purpose. Beckmann
et al. [10] have used this technique to perform multi-subject
and multi-session fMRI analysis. The main superiority of us-
ing multi-way data analysis methods in fMRI applications, is
extracting meaningful features in more than two modes. In
[11, 12], the authors investigate the performance of multiway
Partial Least-Squares technique to analyze jointly recorded
EEG-fMRI data. Moreover, these methods improve the com-
putational speed and are able to process more amount of data.
The main reason of using PARAFAC2 instead of PARAFAC
is to deal with non-trilinear data mixture due to changing the
size of the brain area scanned at each slice. Then, a semi-
blind method based on PARAFAC2 is proposed to integrate
EEG and fMRI. In the proposed technique, we use the infor-
mation obtained from EEG as a constraint to detect the active
area inside the brain involved in post-movement beta rebound
(PMBR). PMBR is a phenomenon related to sharp increase
of the power of beta band (i.e. around 16 − 25 Hz) due to
performing a motor task [13, 14]. Parkes et al. [15] studied
the relation between the PMBR and BOLD using GLM. They
used power profile of EEG signal in electrode C3 as the re-
gressor for GLM to detect voxels responsible for increasing
the power of EEG in beta band.

In the next section the fundamental theory of PARAFAC
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and PARAFAC2 is described. In section 3 we present the
mathematical details of the proposed method. The simula-
tion results are presented in section 4. Finally, the paper is
concluded in section 5.

2. PARAFAC AND PARAFAC2

Tensor is a multi-dimensional array which represents a dataset
by preserving its multi-modal structure. Tensor factorization
refers to methods which are able to decompose a given ten-
sor into sum of multi-linear terms in a way analogous to the
bilinear matrix decomposition. The PARAFAC model for a
three-way data array is formulated as follows.

Given a data tensor X ∈ RI×J×Q and a positive index L
denoting the number of components, we need to find three fac-
tors A ∈ RI×L, F ∈ RJ×L, and C ∈ RQ×L which perform
the following approximate factorization [16]:

X =
L∑

l=1

al ◦ fl ◦ cl +E = [A,F,C] +E (1)

where X̂ = [A,F,C] is the shorthand notation for PARAFAC
factorization, al = [ail] ∈ RI , fl = [fjl] ∈ RJ , and cl =
[cql] ∈ RQ are the constituent vectors of the corresponding
factor matrices A,F and C respectively, E ∈ RI×J×Q is the
error of factorization and ◦ is the outer product operator.

Factors A,F and C can be estimated by minimizing the
following cost function:

J1(A,F,C) = ∥X− X̂∥2F (2)

PARAFAC2 is a special case of PARAFAC with the aim of
analyzing non-trilinear data. In other words, the data tensor in
PARAFAC2 can be varied in one mode. As an example, when
the data matrices in each slab of tensor has the same column
units but different (number of) row units. In this case J will
be variable for different slices of the tensor. The PARAFAC2
model is given by:

Xq = FqDqA
T +Eq (3)

where Xq is the transposed qth frontal slice of the tensor for
q = 1, . . . , Q. A is the component matrix in the first mode
which is fixed for all slabs, Fq is the component matrix in
the second mode corresponding to the qth frontal slice of X,
Dq is a diagonal matrix holding the qth row of the component
matrix C and Eq represents the error corresponding to the Xq .

Harshman [17] proposed a particular constraint to obtain
the unique results in PARAFAC2. He proposed to exploit that
the cross product matrix FT

q Fq should be constant over q.
Kiers et al. [18] have proposed a direct method to fit the model
shown in (3) by minimizing the following cost function over
all its arguments:

J2(Fq,A,D1, . . . ,Dq) =

Q∑
q=1

∥Xq − FqDqA
T ∥2F (4)

subject to FT
q Fq = FT

p Fp for all pairs p, q = 1, . . . , Q.
In order to impose this constraint, it is necessary and suffi-

cient to have Fq = PqF for a columnwise orthogonal matrix
Pq ∈ RJq×L and F ∈ RL×L. So, the above cost function is
reformulated as follows:
J2(P1, . . . ,Pq,F,A,D1, . . . ,Dq) =

Q∑
q=1

∥Xq−PqFDqA
T ∥2F

(5)

subject to PT
q Pq = IL and Dq being diagonal.

In the method proposed by Kiers et al. [18], an alternative
least squares (ALS) algorithm is used to minimize (5) over Pq

for fixed F,Dq and A, q = 1, . . . , Q, and over F,D1, . . . ,Dq

and A for fixed P1, . . . ,Pq .
Minimizing (5) over Pq subject to PT

q Pq = IL leads to
maximizing the following function:

f(Pq) = tr(FDqA
TXT

q Pq) q = 1, . . . , Q (6)

where tr(.) denotes matrix trace operation.
Assume FDqA

TXT
q = UqΣqV

T
q is the singular value

decomposition (SVD), then the maximum of (6) over colum-
nwise orthonormal Pq is obtained by:

Pq = VqU
T
q q = 1, . . . , Q (7)

After calculating Pq , the problem of minimizing (5) over
F,Dq, . . . ,Dq and A reduces to minimizing:

J2(F,A,D1, . . . ,Dq) =

Q∑
q=1

∥PT
q Xq − FDqA

T ∥2F (8)

As it is clearly seen, minimizing (8) is equivalent to the
PARAFAC problem when Xq is replaced by Y = PT

q Xq .

3. PROPOSED METHOD

Assume that the data tensor, X, contains the recorded fMRI
images for one subject. Each fMRI volume recorded in one
scan is composed of a number of slices. In order to arrange the
fMRI data in a multi-way tensor, first the slices are converted
to vector and inserted as rows of the tensor. Such that X(i, :, :)
holds the recorded volume in the ith scan, X(:, :, q) holds the
qth slice of all recorded volumes during all scans and X(:, j, :)
holds the recorded voxel in the jth spatial location. If the
tensor is made based on the above arrangement, matrices A,F
and C denote loading factors in the temporal, spatial and slice
domains respectively.

The main objective of the proposed technique is to incor-
porate the available additional information about the loading
factor in temporal domain. These information are obtained by
processing the EEG signals which are collected with fMRI
simultaneously. In order to incorporate the prior informa-
tion obtained by analysis of the EEG signals, the following
constrained optimization problem is proposed regarding the
model in (1):

J3(A,F,C,Muk,R) = ∥Y − Ŷ∥2F + λ∥M−ART ∥2F
(9)

s.t. RTR = I

where Y = PT
q Xq , M ∈ RI×L is a matrix containing the

prior information about the temporal signature of Y and R ∈
RL×L is the permutation matrix. λ is the regularization pa-
rameter which stabilizes the trade-off between the main part of
the cost function and the constraint. The proposed constraint
helps the algorithm to find voxels representing correlated ac-
tivity with observed changes in EEG signals.

In this work, the constraint matrix M is designed such that
its columns hold the regressors derived from EEG features.
This regressor refers to the predicted temporal brain response
to increase in the amplitude of rolandic beta rhythm. The
regressor is made by convolving the extracted power time-
course from EEG signal in rolandic beta band and haemo-
dynamic response function (HRF). Consider that K out of L
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columns of M are known. These columns indicate the regres-
sors which are available for fMRI analysis. So, the constraint

matrix is defined as M = [Mk

... Muk] such that Mk ∈ RI×K

and Muk ∈ RI×(L−K) are the known and unknown submatri-
ces, respectively:

M = [Mk

... Muk] =


mk

11 . . .m
k
1K muk

1K+1 . . .m
uk
1L

...
...

mk
I1 . . .m

k
IK muk

IK+1 . . .m
uk
IL


(10)

In addition, R, shown in (9), matches the constraint matrix M
with estimated factor for temporal mode A.

ALS approach is traditionally used to estimate the factors.
In this approach, first the gradient of cost function in (9) with
respect to each component matrix is calculated. For this pur-
pose, the unfolded version of data array is used.

Y(1) = A(C⊙ F)T (11)

Y(2) = F(C⊙A)T (12)

Y(3) = C(F⊙A)T (13)

The following equations present gradient of the proposed cost
function with respect to each individual component matrix.

∇AJ3 = −Y(1)(C⊙ F) +A(C⊙ F)T (C⊙ F) (14)

− λMR+ λARTR

∇FJ3 = −Y(2)(C⊙A) + F(C⊙A)T (C⊙A) (15)

∇CJ3 = −Y(3)(F⊙A) +C(F⊙A)T (F⊙A) (16)

∇Muk
J3 = ([Muk −ART ] :,K + 1 : L) (17)

Then, the ALS update rules for the proposed cost-function are
obtained by setting the calculated gradients to zero.

A← (Y(1)(C⊙ F) + λMR)((CTC)⊗ (FTF) + λRTR)†

(18)

F← Y(2)(C⊙A)((CTC)⊗ATA))† (19)

C← Y(3)(F⊙A)((FTF)⊗ (ATA))† (20)

Muk ← ([ART ] :,K + 1 : L) (21)

where ⊗ denotes the Hadamard product and † is the pseudo
inverse operation.

In order to calculate the permutation matrix, R, the same
procedure as what has been used to compute Pk is used. Since
R is orthonormal, minimizing (9) over R is reduced to:

max
R

tr(RATM) (22)

Let ATM = UΣVT , then the unique minimum of (9) is
obtained as R = VUT . The matrix R estimated using this
equation will be an orthonormal matrix.

The regularization parameter, λ, is selected to be variable
starting from a high value and decreasing toward zero. The
function we used for this purpose is:

λ = λ0
1− γ

1− γitr
(23)

where λ0 is initial value of λ, γ is positive scalar selected
within (0 1] and itr is the iteration number.

Fig. 1: Time-frequency power spectrum of the rolandic beta rhythm.

4. EXPERIMENTS

In this section the proposed method is used to integrate EEG
and fMRI. It should be noted that the EEG and fMRI dataset
used in this work have been obtained from a simultaneous
EEG-fMRI recording experiment. The obtained results by the
proposed method are compared with the results of GLM.

4.1. Simultanious EEG-fMRI recording

Simultaneous EEG-fMRI data used in this study were recorded
from four healthy men. All the subjects were right-handed and
their ages ranged from 18 to 50 years. EEG signals were ac-
quired using the Neuroscan Maglink RT system (impedance
was kept within 10-20Kohms), providing 64-channel com-
prising 62 scalp electrodes, one ECG electrode and one EOG
electrode. The sampling rate of raw EEG data was set at
10KHz. During the fMRI acquisition, 300 volumes including
38 slices (3.2969× 3.2969× 3.3mm resolution, TR=2000ms,
TE=25ms) were acquired. The study was approved by the
local ethics committee of King’s College London.

The experimental design consists of three blocks: cued
movement, free movement, and visual control. During the
cued movement one of the arms of a cross illuminated (green)
and participants were required to move the joystick in the illu-
minated direction, during the free movement two arms illumi-
nated (red), and participants were free to move toward one of
the non-illuminated arms and during the visual control block
one of the arms of a cross changed color (red) and participants
should not move the joystick. In all 3 blocks, there were 9 tri-
als per block and each trial including light turning on and then
off lasted for 2.4 seconds.

4.1.1. EEG analysis

In order to prepare the recorded EEG signals to derive the
regressor for fMRI analysis, some preprocessing are needed.
All the preprocessing steps including artifact removal are per-
formed following the method in [19]. After removing the
artifacts, down-sampling and filtering, Morlet wavelet trans-
form is used to compute time-frequency transform of the sig-
nal [20]. The main reason of computing time-frequency trans-
form was to investigate the instantaneous interaction between
the power of EEG signal in beta band and the motor task.

Since all the subjects are right handed, the recorded EEG
signal in channel C3, located in motor cortex, is used to make
the regressor. As mentioned earlier, the power of signal in beta
band increases following movement termination. Fig. 1 rep-
resents the estimated time-frequency transform for a segment
of EEG in electrode C3. Dashed lines show the movement on-
sets. The frequency bin with maximum overall power among
other bins is selected to make the constraint. The power time-
course of selected frequency bin is convolved with HRF as the
predicted temporal response of brain to PMBR. Using the in-
formation obtained from EEG rhythms as a regressor for fMRI
analysis gives the ability to localize the BOLD correlated with
the changes of neuronal activity in this rhythm.
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Fig. 2: Detected BOLD as a result of combining EEG and fMRI to investigate the correlation between BOLD and post-movement beta
rebound. (a) Subject1, (b) Subject2, (c) Subject3, and (d) Subject4. Left column: detected BOLD after applying the proposed method. Middle
column: extracted curve by proposed method shown BOLD change in different slices. Right column: GLM. In these figures SAG, COR and
TRA refer respectively to sagittal, coronal and transversal views.

4.1.2. Combining EEG and fMRI

In this section the proposed method is utilized for EEG and
fMRI integration to detect the active area inside the brain due
to neural activity in beta band. For this purpose, the created
regressor after time-frequency analysis is placed in one of the
columns of submatrix Mk. The procedure explained in sec-
tion 3 is performed to make the three-way data tensor X. In
order to apply the proposed semi-blind algorithm with the aim
of imposing the obtained predictor from EEG, positive λ0 and
γ are selected; 0.2 and 0.99, respectively. Fig. 2 (left and
middle column) show the results of the proposed method. The
highlighted regions, as a result of applying the proposed algo-
rithm, correspond to voxels whose time course is correlated
with changes of beta rhythm during the experiment. The cor-
responding column in matrix C shown in the middle column
of Fig. 2. This graph presents the contribution of BOLD in
different slices of fMRI images. In order to assess the perfor-
mance of the proposed method, the obtained results are com-
pared with those of GLM when the EEG regressor is used as
predictor for fMRI analysis (Fig. 2 (right column)). Statisti-
cal parametric mapping (SPM) toolbox is used to generate the
GLM results [21]. It is seen that voxels located in supplemen-
tary motor area are detected by both methods. The maximum
T-scores of active maps obtained by SPM and the percent-
age of changing BOLD estimated by the proposed method are
shown in Table 1. In addition, the normalized correlation be-
tween the BOLD and changes of beta rhythm are given in this
table. As can be seen the detected BOLD demonstrates an

Table 1: The assessment parameters for EEG-fMRI integration using
GLM and proposed method.

Subject T-score
(max) Bold change (%) Correlation with

SPM active map
Correlation with
Beta change

1 4.05 25.86 0.8126 0.7259
2 3.53 20.76 0.7329 0.8834
3 3.51 25.56 0.7891 0.9012
4 3.63 24.42 0.7025 0.7619

acceptable positive correlation with beta rebound. Moreover,
the normalized correlation between the results of the proposed
method and GLM, shown in Table 1, confirms detection of a
common area as the source of PMBR.

5. CONCLUSIONS

In this paper a new method based on PARAFAC2 has been
proposed to integrate EEG and fMRI. It is a semi-blind tech-
nique which incorporates the information obtained by EEG
through fMRI processing to localize the areas which their ac-
tivities are correlated with the EEG events. The main adjective
of this work has been the detection of sources responsible for
post-movement beta rebound. The proposed method was ap-
plied to an EEG-fMRI dataset obtained from a simultaneous
recording. The obtained results confirmed the strength of the
algorithm for EEG-fMRI integration.
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