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ABSTRACT
An operator-based and sparsity-based approach is proposed
to adaptively separate a signal into additive subcomponents.
The proposed approach can be formulated as an optimization
problem. Since the design of the operator can be adaptively
customized to the target signal, we can propose different types
of operators for different types of signals. The subcompo-
nents are a kind of local narrow band signals in the null space
of an adaptive operator and a residual signal which is a sparse
signal in some sense. Our experiments, including simulated
signals and a real-life signal, demonstrate the efficacy and ac-
curacy of the proposed approach.

Index Terms— Signal separation, adaptive operator, the
null space, ℓ1 constraint, sparse signal

1. INTRODUCTION

Recently, single-channel signal separation has attracted a lot
of interests since it has affected many applications. Many ap-
proaches have been proposed to decompose a single-channel
signal into a mixture of several additive coherent subcompo-
nents. The different definitions of subcomponents lead to dif-
ferent kinds of decomposition methods. For example, Em-
pirical Mode Decomposition (EMD) [1, 2] decomposes an
oscillatory signal into a summation of intrinsic mode func-
tions (IMFs); Matching Pursuit (MP) [3] decomposes a sig-
nal into a summation of time-frequency atoms; Null Space
Pursuit (NSP) [4], which is an operator-based approach, de-
composes a signal into some local narrow band signals which
are defined in the null space of adaptive operators. Among
those approaches, we have a particular interest in NSP.

The NSP approach [4], uses an adaptive operator ΓS

to separate a signal S into additive subcomponents: R and
U(U = S − R). It can be formulated as an optimization
problem:

min
R

{∥ΓS(S−R)∥2+λ1(∥R∥2+γ∥S−R∥2)+F(ΓS)}, (1)

where the operator ΓS can be adaptively estimated from the
signal S, and the last term is the Lagrange term for the param-
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eters of the operator ΓS . Minimizing the term ∥ΓS(S−R)∥2
can ensure that S − R is in the null space of the operator
ΓS . NSP can be used to decompose the residual signal R re-
peatedly. Hence, S can be represented as the summation of
subcomponents in the null spaces of a sequence of operators
derived from the corresponding sequence of residual signals.
Peng et al. proposed two types of singular operator: an in-
tegral operator and a differential operator [5]. The charming
features of NSP are that the design of the operator ΓS can
be customized to the target signal S, and that the operator’s
parameters and the Lagrangian multipliers can be adaptively
estimated [4]. Although NSP has a solid mathematical foun-
dation, it cannot decompose some signals successfully either.
For example, if one subcomponent of a signal S is a piecewise
smooth signal, S is difficult to be separated by NSP effec-
tively. This is because the ℓ2− norm, which is very sensitive
to singular points of a piecewise smooth signal, has been used
in NSP.

Here, we are interested in the type of signals:s(t) =
s1(t) + s2(t), where s1(t) is a narrow band signal in the
null space of an operator, and s2(t) is a sparse signal in some
sense. In order to decompose this type of signals, we consider
measures of sparsity rather than measures of energy used in
NSP. In fact, a very simple and intuitive measure of sparsity
of a vector x ∈ Rm is the ℓ0 norm: ∥x∥0 = {i : xi ̸= 0}, if
∥x∥0 ≪ m, x is sparse. But the minimization problem:

(P0) : min
x

∥x∥0 subject to b = Ax. (2)

is a non-convex combinatorial optimization problem, and in-
deed, it has been proved that (P0) is, in general, NP-Hard [6].
According to [7], in most cases, (P0) can be equivalent to the
(P1) problem,

(P1) : min
x

∥x∥1 subject to b = Ax. (3)

where ∥x∥1 =
∑

i |xi|. The problem (P1) can be cast as a
standard linear programming (LP) problem, and solved us-
ing simplex methods, modern interor-point methods, or other
techniques, such as homotopy methods [8].

In this paper, we adopt ℓ1− constraint instead of ℓ2− con-
straint in NSP, and propose an operator-based and sparsity-
based approach to adaptive signal separation. We demonstrate
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the efficacy and accuracy of the proposed approach in decom-
posing simulated signals and a real-life signal.

More precisely, this paper is organized as follows. In Sec-
tion 2, the proposed operator-based and sparsity-based algo-
rithm is presented in detail. In Section 3, experiments on sim-
ulated signals and a real-life signal are reported respectively
to address the efficiency and performance of the proposed ap-
proach. We summarize our conclusions and some issues in
Section 4.

2. PROPOSED OPERATOR-BASED AND
SPARSITY-BASED APPROACH

In the previous section, we reviewed the operator-based ap-
proach proposed in [4, 5], and analyzed the rationality of ℓ1−
constraint leading to sparse solution. Now we turn to dis-
cuss adaptive decomposition of signals which we focus on,
and propose our operator-based and sparsity-based adaptive
signal separation approach.

2.1. Signal Model

We assume that a signal S can be separated into two additive
subcomponents: U and R. Let U be a narrow band signal
which is in the null space of the operator Γs, and R be a sparse
signal in some sense, such as an impulse signal, or a piecewise
smooth signal. The signal model assumes that:

S = U +R, (4)

where ΓsU = 0, and DR is a sparse signal. D is the identity
operator, or the first order differential operator, or the second
order differential operator.

2.2. The Operator-based and Sparsity-based Approach

Here, we propose an operator-based and sparsity-based ap-
proach to adaptively decompose S. We introduce the follow-
ing optimization problem:

{R,α} = argmin
R,α

{∥Γs(S −R)∥2 + λ1∥R∥1 + λ2∥D2α∥2}
(5)

where Γs can be adaptively estimated from the target signal,
and we choose the differential operator: ΓS = d2

dt2 + α(t)
to demonstrate the proposed approach; α is the square of the
instantaneous frequency of the signal, and D2 is the second
order differential operator to ensure that α is a smooth func-
tion; λ1, λ2 are the Lagrangian multipliers, and D is the iden-
tity operator (R itself is a sparse signal ), or the first order
differential operator (R is a square wave ), or the second or-
der differential operator (R is a triangular wave) to make sure
that DR is a sparse signal. In fact, D can be always the sec-
ond order differential operator in the above cases, since the
differential of a sparse signal is still a sparse signal.

In a discrete case, the optimization problem (5) can be
rewritten as:

{R,α} = arg min
R,α,λ1,λ2

{∥(D2 + Pα)(S −R)∥2

+ λ1∥DR∥1 + λ2∥D2α∥2}
(6)

where S,R, α are column vectors, Pα is a diagonal matrix
whose diagonal elements are equal to α, and D2 is a matrix
of the second order difference, D is also the corresponding
matrix. Let α̂, R̂ be the solution of Equation (6). Given λ̂1

and λ̂2, Equation (6) becomes

F(α,R, λ̂1, λ̂2) =∥(D2 + Pα)(S −R)∥2

+ λ̂1∥DR∥1 + λ̂2∥D2α∥2
(7)

Then, we have

∂F
∂α

= 2PT
S−R(PS−Rα+D2(S −R)) + 2λ̂2D

T
2 D2α, (8)

where PS−R is a diagonal matrix whose diagonal elements
are equal to (S − R). Let ∂F

∂α = 0, we obtain the estimation
of α:

α̂ = −(PT
S−RPS−R + λ̂2D

T
2 D2)

−1PT
S−RD2(S −R). (9)

Then, we rewrite Equation (7) as:

F(α̂, R, λ̂1, λ̂2) = ∥b−AR∥2+λ̂1∥DR∥1+λ̂2∥D2α̂∥2 (10)

where b = (D2 + Pα̂)S and A = (D2 + Pα̂). To estimate R,
we solve the following unconstrained optimization problem:

min
R

∥b−AR∥2 + λ̂1∥DR∥1. (11)

Here, the iteratively reweighted least squares(IRLS) algo-
rithm [9, 10, 11] is used to solve the optimization problem
(11). Setting PR = diag(|R|), i.e. a diagonal matrix whose
diagonal elements are equal to |R|, then ∥R∥1 = RTP−1

R R.
In this way, we may view the ℓ1-norm as an adaptively-
weighted version of the squared ℓ2-norm. Thus the optimiza-
tion problem (11) can be rewritten:

min
R

∥b−AR∥2 + λ̂1R
TDTP−1

DRDR, (12)

where PDR = diag(|DR|). This is a quadratic optimization
problem, which is solvable using standard linear algebra.

We summarize the above derivations to solve the opti-
mization problem (6) in the following algorithm 1.

3. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we demonstrate the performance of the pro-
posed algorithm through decomposing several simulated sig-
nals and a real-life signal. We compare our experiment results
with which achieved by EMD and NSP.
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Algorithm 1 the operator-based and sparsity-based algorithm

1: Input: the signal S, the parameter λ̂1, λ̂2, and the stop-
ping threshold ϵ.

2: Let j = 0, R̂j = 0.
3: Compute α̂j according to Equation (9) as follows:

α̂j = −(PT
S−R̂j

PS−R̂j
+λ̂2D

T
2 D2)

−1PT
S−R̂j

D2(S−R̂j),

where PS−R̂j
is a diagonal matrix whose diagonal ele-

ments are equal to S − R̂j , and D2 is the matrix of the
second order difference.

4: Compute R̂j+1 by using IRLS: approximately solve the
linear system

(λ̂1D
TP−1

DR̂j
D +ATA)R̂j+1 = AT b,

where D is the corresponding matrix: an identity matrix
or the matrix of the first (second) order difference, b =
(D2 + Pα̂j )S and A = (D2 + Pα̂j ).

5: If ∥R̂j+1 − R̂j∥ > ϵ∥S∥, then set j = j + 1 and go to
Step 3.

6: Output: the optimal solution R̂ = R̂j+1 and the operator
parameter α̂ = α̂j .

In the first example, we show that the proposed algorithm
can separate square wave signals and amplitude modulation
and frequency modulation (AM-FM) signals. We decompose
the signal S(t), where S(t) = s1(t)+s2(t), s1(t) = 0.25(2+
0.5cos(πt))cos(2πt2) and s2(t) is a square wave. Since the
first order difference of a square wave is a sparse signal, D
is selected as the matrix of the first order difference in Equa-
tion (6). Figure 1 shows the extracted subcomponents and the
error signals by applying our proposed algorithm and NSP
respectively. In Figure 1, (a): the input signal; (b): the loga-
rithmic of Fourier spectrum of the input signal; (c): the first
extracted component by the proposed algorithm ; (d): the er-
ror signal obtained by subtracting our first extracted compo-
nent from s1(t); (e): the second extracted component by the
proposed algorithm; (f): the error signal obtained by subtract-
ing our second extracted component from s2(t); (g): the ex-
tracted component by NSP; (h): the error signal by NSP. EMD
decomposes S(t) into several harmonic signals. Neither NSP
nor EMD can successfully extracted the square wave from
S(t).

The second example shows that the proposed algorithm
can separate triangular wave signals and AM-FM signals. We
decompose the signal S(t), where S(t) = s1(t) + s2(t),
s1(t) = 0.25(1.2 + sin(2πt))cos(2π(t2 + 12t)) and s2(t)
is a triangular wave. Since the second order difference of a
triangular wave is a sparse signal, D is selected as the ma-
trix of the second order difference in Equation (6). Figure
2 shows the extracted subcomponents and the error signals
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Fig. 1. Decompose 0.25(2 + 0.5cos(πt))cos(2πt2) +
a square wave by applying the proposed approach and NSP
respectively.

achieved by our proposed algorithm. By contrast, the cor-
responding triangular wave components, which are extracted
by EMD and NSP respectively, are shown in Figure 3. Both
of them are replaced by harmonic signals. Thus the errors of
EMD and NSP are much larger than ours. Figure 3(a) shows
the original triangular wave and the subcomponents extracted
by different methods. Figure 3(b) is a detailed view of Figure
3(a). And through it, we can see more clearly and intuitively
the performance of the proposed algorithm.
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Fig. 2. Using the proposed approach to decompose 0.25(1.2+
sin(2πt))cos(2π(t2 + 12t)) + a triangular wave.

We show that the proposed algorithm can separate im-
pulse signals and AM-FM signals in the third example. We
decompose the signal S(t), where S(t) = s1(t) + s2(t),
s1(t) = 0.2(1.5 + cos(0.05πt))cos(0.01πt2) and s2(t) is an
impulse signal. Since an impulse signal itself is a sparse sig-
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Fig. 3. The original triangular wave and the subcomponents
extracted by different methods.

nal, D is selected as an identity matrix in Equation (6). Figure
4 shows the extracted subcomponents and the error signals by
using our proposed algorithm. By contrast, neither NSP nor
EMD can decompose S(t) effectively.
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Fig. 4. Using the proposed approach to decompose S(t) =
0.2(1.5 + cos(0.05πt))cos(0.01πt2) + an impulse signal.

Since in the ECG signals, the QRS complex is a spike-
type signal, which satisfies the sparse property described
above, we apply our proposed algorithm to separate a real
ECG signal 1 [12] in the fourth example, where D is selected
as the identity matrix. The separation result is shown in Fig-
ure 5, from which, we can find that PT-waves and QRS-waves
can be clearly separated from the recordings. This may sug-
gest that our proposed algorithm might be an effective and

1http://physionet.org/physiobank/database/nsrdb/
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Fig. 5. The ECG signal and the components extracted from
ECG by applying the proposed approach.

useful tool for ECG analysis and diagnosis [13, 14].
Finally, we come to make a description. Although we

choose D as an identity matrix or the matrix of the first
(second) order difference respectively in our implementation,
these experiment results almost can be achieved when D is
always the matrix of the second order difference.

4. CONCLUSION

We propose an operator-based and sparsity-based approach
for extracting a sparse signal in some sense from a given tar-
get signal. And we provide several examples, including sim-
ulated signals and an ECG signal, to demonstrate the perfor-
mance of our algorithm. We compare the proposed approach
with NSP and EMD. The experiment results show that our ap-
proach is more effective for this type of signals. In our future
work, we shall develop procedures to estimate the regulariza-
tion parameter in our algorithm.

5. RELATION TO PRIOR WORK

The work has focused on the operator-based and sparsity-
based approach [8, 7] to adaptively decompose signals. It
takes advantage of the adaptive estimation of operator and
measures of sparsity by the ℓ1 norm. The work by Peng
[4, 5, 15] adopted ℓ2 norm, which is a measure of energy and
smoothness, and is not fit for the type of signals which we are
interested in. We apply our proposed algorithm to separate a
real ECG signal, and extract PT-waves and QRS-waves from
the recordings successfully. Therefore, the approach might be
an effective and useful tool for ECG analysis and diagnosis.
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