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ABSTRACT

The hypercomplex (e.g., complex, quaternion) valued linear model

often arises in the signal processing field and attract increasing at-

tention recently. In this paper, we present an algebraic translation

of a hypercomplex valued linear systems into a real valued linear

model. This translation is designed by taking advantage of isomor-

phism between hypercomplex numbers and multi-dimensional real

vectors and enables us to straightforwardly apply real valued opti-

mization frameworks to various estimation problems for the hyper-

complex linear model. We also clarify the useful algebraic properties

of the translation. As an application to hypercomplex valued adap-

tive filtering problems, we derived Am-adaptive projected subgradi-

ent method (Am-APSM) for hypercomplex valued system identifica-

tion problems, and show that many hypercomplex adaptive filtering

algorithms can be viewed as a special case of this algorithm. Nu-

merical example shows that a new algorithm derived from proposed

algorithm outperforms existing hypercomplex adaptive algorithms.

Index Terms— hypercomplex number, Cayley-Dickson proce-

dure, linear system, adaptive filtering, parallel projection

1. INTRODUCTION

Hypercomplex (e.g., complex, quaternion) signals arise naturally in

many areas of engineering and science such as communications,

wind forecasting [1, 2, 3] computer graphics [4] and robotics [5]. In

the statistical signal processing field, effective utilization of hyper-

complex number system, e.g., complex and quaternion, have been

investigated extensively.

For design of hypercomplex valued adaptive learning algo-

rithms, we often need to evaluate the derivative of a cost function for

an computational strategy in the hypercomplex optimization frame-

work. However, even if the system is represented by hypercomplex

number system, the cost functions should be real valued, hence not

analytic as a univariate hypercomplex valued function, e.g., Cauchy-

Riemann equation is not satisfied in the complex domain. As a

systematic use of real differentiability of the cost function in the

hypercomplex domain, special calculuses have been established and

applied in the existing optimization framework to the hypercomplex

domain.

In the adaptive filtering field, for example, the Wirtinger calculus

(CR-calculus) [6, 7] has been used for design of complex adaptive

algorithms [8, 9, 10] and the HR-calculus [11] was proposed spe-

cially to design quaternion adaptive algorithms [11, 12]. These spe-

cial calculuses give us insight for extending relatively simple gradi-

ent descent-type adaptive filtering algorithms e.g., normalized least

mean square (NLMS) [13], affine projection algorithm (APA) [14],

This work was supported in part by JSPS Grants-in-Aid (B-21300091).

to the hypercomplex domain [9, 10, 12]. However, observing CR-

calculus and HR-calculus, we see that the complexity for the spe-

cial calculuses tends to increase w.r.t. the dimension of Am (see,

(1)). Moreover, such a special calculus has not yet been established

for the general hypercomplex number systems. This situation could

be a burden to create further advanced algorithms in hypercomplex

number systems.

In this paper, to clarify the relation between hypercomplex and

real vector valued linear system, we propose an algebraic real trans-

lation of hypercomplex linear models and show that any hypercom-

plex linear model can be translated into a real one by taking advan-

tage of the isomorphism between hypercomplex numbers and multi-

dimensional real vectors. We also clarify useful algebraic properties

of this translation. Thanks to these properties, the proposed trans-

lation enable us to immediately obtain isomorphic real models to

hypercomplex linear models as well as obtain an optimal solution

without passing through hypercomplex optimization method which

requires such special calculuses.

As an application to hypercomplex valued adaptive filtering

problem, we present a hypercomplex adaptive algorithm named

Am-APSM. This algorithm is based on the adaptive projected sub-

gradient method (APSM) [15, 16], which has been proposed as

an efficient algorithm for asymptotic minimization of a certain se-

quence of nonnegative convex functions. The proposed adaptive

algorithm, Am-APSM is an extension of the APSM to the hyper-

complex domain by using the proposed translation. Similar to the

real valued case, Am-APSM covers a wide range of the hypercom-

plex valued projection based adaptive filtering algorithms. Indeed,

by designing a certain sequence of convex objectives, a variety of

hypercomplex valued adaptive filtering algorithms such as Am-

normalized least mean square (Am-NLMS), Am-affine projection

algorithm (Am-APA) and Am-adaptive parallel subgradient projec-

tion (Am-APSP) are derived in a unified manner as simple examples

of the Am-APSM. Numerical examples show that an algorithm de-

rived as a special case of proposed adaptive algorithm outperforms

existing adaptive algorithms.

2. HYPERCOMPLEX NUMBERS

Let N and R be respectively the set of all nonnegative integers and

the set of all real numbers. Define an m-dimensional hypercomplex

number Am (m ∈ N \ {0}) expanded on the real vector space [17]

a := a1i1 + a2i2 + · · ·+ amim ∈ Am, a1, . . . , am ∈ R (1)

based on imaginary units i1, . . . , im, where i1 = 1 represents the

vector identity element. A multiplication table defines the products

of any imaginary unit with each other or with itself. Any hypercom-

plex number is expressed uniquely in the form of (1). We also define
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the conjugate of hypercomplex number a as

a∗ := a1i1 − a2i2 − · · · − amim. (2)

In this paper, we consider the hypercomplex number systems which

are constructed recursively by the Cayley-Dickson doubling proce-

dure (C-D procedure) [17]. The C-D procedure is a well-known

method for extending a number system. This method is used to ex-

tend the real number into the complex number, and the complex

number into quaternion number. By using the C-D procedure, an

m-dimensional hypercomplex number Am is extended to A2m by

[17, 18]

z := x+ yim+1 ∈ A2m, x, y ∈ Am, (3)

where im+1 6∈ Am is the additional imaginary unit for doubling

the dimension of Am satisfying i2m+1 = −1, i1im+1 = im+1i1 =
im+1 and ivim+1 = −im+1iv =: im+v for all v = 2, . . . ,m.

For example, the real number system (A1 :=) R is extended into

complex number system C (= A2) by the C-D procedure. Note

that the value of m is restricted to the form of 2n (n ∈ N). The

hypercomplex number systems constructed inductively from the real

number by the C-D procedure are called Cayley-Dickson number

system.

Fact 2.1. According to this procedure, imaginary units of Cayley-

Dickson number system have the following properties:

1. i2α = −1 for all α ∈ {2, . . . , m}.

2. iαiβ = −iβiα for all α, β ∈ {2, . . . , m}.

3. There exist γ ∈ {1, . . . ,m} s.t. iαiβ = iγ or −iγ for all

α, β ∈ {1, . . . ,m}.

Note that Fact 2.1 ensures aa∗ =
∑m

ℓ=1 a
2
ℓ ≥ 0 for any a ∈ Am in

(1) and a∗ ∈ Am in (2).

A representative example of hypercomplex number is the

quaternion H. The quaternion number system is constructed from

the complex number system by using the C-D procedure. A quater-

nion number is a 4-dimensional hypercomplex which is defined

as

q = q1 + q2ı + q3+ q4κ ∈ H, q1, q2, q3, q4 ∈ R (4)

with the multiplication table:

ı = −ı = κ, κ = −κ = ı, κı = −ıκ = ,
ı2 = 2 = κ2 = −1

(5)

by letting M = 4, i1 = 1, i2 = ı, i3 =  and i4 = κ. From (5),

quaternions are not commutative, that is, pq = qp for p, q ∈ H does

not hold in general.

Remark 2.1. The octonion O can be constructed from quaternion by

the C-D procedure. Note that the octonions are neither commutative

nor associative, that is, pq = qp or p(qr) = (pq)r for p, q, r ∈ O

does not hold in general.

We also define the hypercomplex space AN
m, ∀N ∈ N \ {0}

equipped with the inner product 〈x,y〉
Am

:= xHy ∈ Am,∀x,y ∈

AN
m and its induced norm ‖x‖

Am
:= 〈x,x〉

1/2
Am

, ∀x ∈ AN
m, where

(·)H denotes the Hermitian transpose of vectors or matrices (e.g.,

xH := [x∗
1, . . . , x

∗
N ] for x := [x1, . . . , xN ]⊤, where x1. . . . , xN ∈

Am and (·)⊤ stands for the transpose). For any nonempty closed

convex set1 C ⊂ AN
m, the projection operator P Am

C : AN
m → C

assigns a vector x ∈ AN
m to the unique vector P Am

C (x) ∈ C s.t.

dAm
(x, C) :=

∥∥x− P Am

C (x)
∥∥
Am

= miny∈C ‖x− y‖
Am

.

1A set C ⊂ AN
m is said to be convex provided that ∀x,y ∈ C,∀ν ∈

(0, 1), νx+ (1 − ν)y ∈ C.

3. PROPOSED ISOMORPHIC TRANSLATION

In this section, we propose an algebraic translation of hypercomplex

valued linear systems into real systems. Suppose that the hypercom-

plex valued linear systems are expressed as

y := Ax+ b, (6)

where y, b ∈ AM
m , x :=

∑m
ℓ=1 xℓiℓ ∈ AN

m (xℓ ∈ RN) and A :=∑m
ℓ=1 Aℓiℓ ∈ AM×N

m (Aℓ ∈ RM×N ). A trivial correspondence

(mapping) of hypercomplex vectors2 or matrices to real ones is

(̂·) : AM×N
m → R

mM×N :

A 7→ Â :=
[
A

⊤
1 ,A

⊤
2 , . . . ,A⊤

m

]⊤
. (7)

This correspondence is just concatenating a real part and all imagi-

nary parts in the hypercomplex vectors or matrices. Obviously, this

mapping is invertible and thus we can also define

|(·) : RmM×N → A
M×N
m : Â 7→ A. (8)

Unfortunately, it is hard to obtain the correspondence of Ax only

in terms of the mappings (̂·) and |(·), so we propose the following

nontrivial mapping:

(̃·) : AM×N
m → R

mM×mN :

A 7→ Ã :=
[
L

(1)⊤
M Â,L

(2)⊤
M Â, . . . ,L

(m)⊤
M Â

]
, (9)

where the real valued matrix L
(ℓ)
M ∈ RmM×mM (ℓ = 1, . . .m) is

defined for the m-dimensional hypercomplex number Am as

L
(ℓ)
M =




δ
(ℓ)
1,1IM δ

(ℓ)
1,2IM · · · δ

(ℓ)
1,mIM

−δ
(ℓ)
2,1IM −δ

(ℓ)
2,2IM · · · −δ

(ℓ)
2,mIM

.

..
.
..

. . .
.
..

−δ
(ℓ)
m,1IM −δ

(ℓ)
m,2IM · · · −δ

(ℓ)
m,mIM



, (10)

IM is the M -dimensional identity matrix and

δ
(γ)
α,β :=





1 (if iαiβ = iγ),
−1 (if iαiβ = −iγ),
0 (otherwise).

Lemma 3.1. δ
(γ)
α,β satisfies the following:

1. δ
(β)
α,1 = δ

(β)
1,α for all α, β ∈ {1, . . . ,m}.

2. δ
(β)
α,1 = 1 ⇐⇒ α = β for all α, β ∈ {1, . . . ,m}.

3. δ
(1)
1,1 = 1, δ

(1)
α,α = −1 for all α ∈ {2, . . . ,m}.

4. δ
(γ)
α,β = −δ

(α)
γ,β = −δ

(β)
α,γ = −δ

(γ)
β,α if α, β, γ ∈ {2, . . . ,m}

are distinct.

5. There exists γ ∈ {1, . . . ,m} s.t. δ
(γ)
α,β = 1 or −1 for all

α, β ∈ {1, . . . ,m}.

Lemma 3.2. L
(ℓ)
M is an orthogonal matrix i.e., L

(ℓ)⊤
M = L

(ℓ)−1
M for

all ℓ = 1, . . . ,m.

For the mappings introduced above, we establish the following

theorem.

2All vectors in this paper are column vectors, that is, AN
m = AN×1

m .
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translation

inv. translation

Computation

Computation

A
M

m R
mM

y = Ax+ b ŷ = Ãx̂+ b̂

x
opt

x̂
opt

isomorphic
using

special calucluses

(̂·)

|(·)

Fig. 1. Concept of proposed translation

Theorem 3.1 (Algebraic correspondence between real and hyper-

complex vectors/matrices). If the hypercomplex number system Am

is constructed by the C-D procedure, the following relations hold

true:

1. (Â+B) = Â+ B̂ for all A,B ∈ AM×N
m

2. (Ã+B) = Ã+ B̃ for all A,B ∈ AM×N
m

3. (ÂB) = ÃB̂ for all A ∈ AM×N
m and B ∈ AN×L

m .

4. (ÃH) = Ã
⊤

for all A ∈ AM×N
m .

5. (Âx) = Ãx̂ for all A ∈ AM×N
m and x ∈ AN

m.

6. (x̂Hy) = x̃
⊤
ŷ for all x, y ∈ AN

m.

7. ‖x‖
Am

= ‖x̂‖
R

for all x ∈ AN
m.

8.
̂P Am

C (x) = P R

Ĉ
(x̂) for any closed convex set C ⊂ AN

m and

any point x ∈ AN
m, where Ĉ := {x̂ ∈ RmN |x ∈ C} ⊂

RmN . �

Based on Theorem 3.1, we propose an algebraic translation of

hypercomplex linear model (6) into the following real vector valued

linear model:

ŷ = Ãx̂+ b̂. (11)

Fig. 1 illustrates the concept of the proposed translation. A hyper-

complex linear system (6) is once translated into an equivalent real

vector valued linear model (11) by the mapping (̂·). Suppose that

we obtain a real vector x̂opt ∈ RmM by applying some computa-

tions to (11). Then we also obtain the corresponding hypercomplex

vector xopt ∈ AM
m by applying the inverse mapping |(·) to x̂opt

.

By these steps, the proposed translation enables us to obtain solu-

tion xopt without using the calculuses designed specially for each

hypercomplex number systems.

3.1. Applications to adaptive filtering

In this section, we propose a new adaptive algorithm in the gen-

eral hypercomplex domain. Let us elaborate on the following

hypercomplex adaptive filtering estimation problem. Let uk :=
[uk, uk−1, . . . , uk−N+1]

⊤ ∈ AN
m be the input vector and Uk :=

[uk,uk−1, . . . ,uk−r+1] ∈ AN×r
m be the input matrix at time

k. Let also nk ∈ Am denote the noise process. If h⋆ :=
[h⋆

1, h
⋆
2, . . . , h

⋆
N ]⊤ ∈ AN

m be the unknown system to be estimated,

and nk = [nk, nk−1, . . . , nn−r+1]
⊤ ∈ Ar

m be the noise at time k,

we introduce the following hypercomplex linear model for the data

process dk ∈ Ar
m:

dk := U
H
k h

⋆ + nk. (12)

By using Theorem 3.1, we immediately obtain the following real

valued data process d̂k ∈ Rmr:

d̂k := Ũ
⊤

k ĥ
⋆
+ n̂k. (13)

Unknown System h
⋆

+

Uk
+

Noise

Datadk

Estimation Residual
−1

nk

Adaptive Filter h

U
H

k
h− dk

Fig. 2. Adaptive filtering scheme

Hence the goal of hypercomplex adaptive filtering problem is re-

duced to approximating the real valued unknown system ĥ
⋆
∈ RmN

by the real valued adaptive filter ĥn ∈ RmN with the knowledge on

(Ũk, d̂k) ∈ RmN×mr×Rmr , ∀k < n. Note that at any time we can

obtain the corresponding hypercomplex adaptive filter hn ∈ AN
m to

ĥn by (8). This is completely the same form as the real valued adap-

tive filtering problem, so we can directly apply fairly general meth-

ods established in the real domain. In this paper, we propose adap-

tive algorithms based on the adaptive projected subgradient method

(APSM).

Am-adaptive projected subgradient method (Am-APSM). Let

Θk : AL
m → [0,∞) (k ∈ N) be a sequence of continuous convex3

functions and ∂Θk(y) be the subdifferential4 of Θk at y ∈ AL
m. The

Am-APSM provides a vector sequence which minimizes asymptot-

ically the sequence of functions Θk over a closed convex set K ⊂
AL

m. For an arbitrarily given h0 ∈ K, the Am-APSM produces a

sequence (hk)k∈N by

hk+1 =





P Am

K

(
hk − λk

Θk(hk)

‖Θ′
k
(hk)‖2

Am

Θ′
k(hk)

)

(if Θ′
k(hk) 6= 0),

P Am

K (hk) (otherwise),

(14)

where Θ′
k(hk) ∈ ∂Θk(hk), 0 ≤ λk ≤ 2.

Theorem 3.2 (Properties of Am-APSM). Similar to the real valued

case [15, 16], the sequence (hk)k∈N produced by Am-APSM satis-

fies the following properties:

(1) (Monotone approximation)

‖hk+1 − h
⋆(k)‖Am

≤ ‖hk − h
⋆(k)‖Am

, (15)

h
⋆(k) ∈ Ωk := {h ∈ K|Θk(h) = inf

x∈K
Θk(x)}.

(2) (Asymptotic optimality) Suppose

∃N0 ∈ N s.t.

{
infx Θ(x), ∀k ≥ N0 and

Ω :=
⋂

k≥N0
Ωk 6= ∅.

(16)

Then (hk)k∈N is bounded. Moreover, if we use λn ∈ [ε1, 2−
ε2] ⊂ (0, 2) for all k, we have

lim
k→∞

Θk(hk) = 0 (17)

provided that (Θ′
k)k∈N is bounded. �

As a class of the Am-APSM, we present the following algo-

rithm.

3A function Θ : AL
m → R is said to be convex if ∀x,y ∈ AL

m and

∀ν ∈ (0, 1), Θ(νx + (1 − ν)y) ≤ νΘ(x) + (1 − ν)Θ(y).
4The subdifferential of Θ at y is the set of all the subgradient of Θ at y;

∂Θ(y) := {s ∈ AL
m| 〈x̂− ŷ, ŝ〉

R
+Θ(y) ≤ Θ(x), ∀x ∈ AL

m}

6183



Algorithm 3.1. Let S
(k)
i ⊂ AL

m := AN
m, i ∈ Ik ⊂ Z be

closed convex sets. Define the sequence of continuous convex

function by Θk(x) = 1
Lk

∑
i∈Ik

ω
(k)
i dAm

(hk, S
(k)
i )dAm

(x,

S
(k)
i ), where

∑
i∈Ik

ω
(k)
i = 1, {ω

(k)
i }i∈Ik

⊂ (0, 1] if Lk :=
∑

i∈Ik
ω

(k)
i dAm

(hk, S
(k)
i ) 6= 0, and Θk(x) = 0 otherwise. In this

case we have Θ′
k(x) =

1
Lk

∑
i∈Ik

ω
(k)
i (x−P Am

S
(k)
i

(x)) ∈ ∂Θk(x)

if Ln 6= 0, and Θ′
k(x) = 0 ∈ ∂Θk(x) otherwise. By applying (14)

to Θn with K ⊂ AN
m, we deduce a following scheme:

hk+1 = P Am

K


hk + µk


∑

i∈Ik

ω
(k)
i P Am

S
(k)
i

(hk)− hk




 , (18)

where h0 ∈ K, µk ∈ [0, 2Mk] and

Mk :=





∑
i∈Ik

ω
(k)
i

∥∥∥∥∥P
Am

S
(k)
i

(hk)−hk

∥∥∥∥∥

2

Am∥∥∥∥∥
∑

i∈Ik
ω
(k)
i

P
Am

S
(k)
i

(hk)−hk

∥∥∥∥∥

2

Am

(if hk 6∈
⋂

i∈Ik
S

(k)
i ),

1 (otherwise).

This is a generalization of Algorithm 1 in [19], hence it includes

many useful adaptive algorithms shown as the following examples.

Example 3.1. Algorithm 3.1 reproduces the Am-affine projection

algorithm (Am-APA, in particular, Am-NLMS if r = 1) if we set

Ik = {k}, K = AN
m, and

S
(k)
i = Vk := argmin

h∈AN
m

∥∥∥UH
k h− dk

∥∥∥
Am

.

This is a hypercomplex extension of the APA [14] (NLMS [13]).

As the simplest examples, consider the complex case, i.e., the case

where Am = C. Then we obtain an algorithm which agrees with the

complex affine projection algorithm (C-APA) [9]. Note that the com-

plex widely linear model [20] can be expressed in the form of (12),

so this algorithm also covers widely linear complex affine projection

algorithm (WL-C-APA) [10] for noncircular input signals.

Example 3.2. Algorithm 3.1 reproduces the Am-adaptive paral-

lel subgradient projection (Am-APSP) if we set Ik = {k, k −
1, . . . , k − q + 1}, K = AN

m, and

S
(k)
i = H−

i (hk)

:= {x ∈ A
N
m|(x̂− ĥk)

⊤∇gi(hk) + gi(hk) ≤ 0}, (19)

where q is the number of parallel processors and gi(x) = ‖UH
i x−

di‖
2
Am

− ρ, ∀ρ ≥ 0. Similar to the real valued case [19], the Am-

APSP uses weighted average of multiple subgradient projection to

keep low computational cost of Am-NLMS as well as to achieve fast

and stable convergence even in severely noisy environment.

4. NUMERICAL EXAMPLES

We examine the efficiency of the new algorithm derived from the

Am-APSM in the context of a simple system identification prob-

lem. Note that the proposed algorithm is designed in the unified

way for each hypercomplex number systems. In this paper, we

perform the comparison in the complex case as a simple exam-

ple. We use a complex system h⋆ ∈ C200 with coefficients

0 2 4 6 8 10
−40

−30

−20

−10

0

Iteration number (x10
3
)

S
y
s
te

m
 m

is
m

a
tc

h
 [

d
B

]

 

 

C−LMS (λ=0.006)

C−APA (µ=1, r=2)

Proposed (C−APSP, µ=2, r=2, q=10)

Fig. 3. Comparison of system mismatch

h⋆
k = α

(
1 + cos

(
2π(n−100)

200

)
− j

[
1 + cos

(
2π(n−100)

400

)])
,

(k = 1, . . . , 200), where α = 0.0684 to ensure unit weight

norm. This setting is based on [8]. The input signal uk is gen-

erated by uk :=
√

1− β2zk + jβzk , where β = 0.1 and

zk is i.i.d. from real valued Gaussian distribution with mean 0
and variance 1. The noise nk is zero mean complex circular

white Gaussian and signal-to-noise ratio (SNR) = 30dB, where

SNR := 10 log10(E‖u
H
k h⋆‖2C/E‖nk‖

2
C) and E(·) denotes ex-

pectation. We compare the existing C-LMS [21], C-APA [9] and

A-APSP in the complex domain, that is, C-APSP. We set the param-

eters λ(step-size) = 0.06 for C-LMS, (µk, r, q) = (2, 2, 10), ∀k for

the C-APSP and (µk, r) = (1, 2), ∀k for the C-APA. The step-sizes

of these methods are fixed so that their initial convergence speed

are the same. Fig. 3. depicts a comparison of these three methods

in the sense of system-mismatch 10 log10(‖h
⋆ − hk‖

2
C
/ ‖h⋆‖2

C
)

averaged over 300 trials. It shows that C-APSP achieves better

steady-state behavior than C-LMS and C-APA.

5. CONCLUSIONS WITH RELATION

TO PRIOR WORK

We have proposed an algebraic real translation of the hypercomplex

valued linear systems and show that this translation enables us to

immediately obtain isomorphic real models to hypercomplex linear

models. The proposed translation is designed to take advantage of

the isomorphism between Am and Rm. We have clarified the al-

gebraic properties of the translation. We have also proposed a new

hypercomplex adaptive algorithm named Am-APSM based on the

APSM as an application of the proposed translation to adaptive fil-

tering problems. The proposed algorithm covers wide range of hy-

percomplex adaptive filtering algorithms. Numerical example shows

that C-APSP derived from the proposed algorithm achieves better

steady-state behavior than some existing adaptive algorithms.

We finally present a short review of related prior work. This

work focused on the optimization frameworks in hypercomplex val-

ued signal processing. In general, the cost function is real valued

hence not analytic as a univariate hypercomplex valued function due

to its strong requirement for the analyticity. Wirtinger [6] presented

a special calculus which relaxes this strong requirement, and many

prior works employ this derivative in their optimization techniques

[8, 9, 10, 22, 23]. Recently, Mandic et al. [11] extended this deriva-

tive to the quaternion domain. This work clears the relation between

hypercomplex and real systems as well as enables us to design hyper-

complex optimization technique without passing through such calcu-

luses.
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