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ABSTRACT

We propose a quantitative framework for constructing optimal
policies to manage systemic risk in financial networks. We ana-
lyze borrower-lender networks where all the loan amounts and
cash flows are known, and where some nodes may default in
the absence of external intervention. Given a fixed amount of
cash to be injected into the system, we address the problem of
allocating it among the nodes to minimize the overall amount of
unpaid liabilities. We show that this problem is equivalent to a
linear program. In addition, we address the problem of allocat-
ing the cash injection amount so as to minimize the number of
nodes in default. For this problem, we develop an approximate
algorithm which uses reweighted ℓ1 minimization. We illus-
trate this algorithm using two synthetic network structures for
which the optimal solution can be calculated exactly. We show
through numerical simulations that the solutions calculated by
our algorithm are close to optimal.

Index Terms— Risk, contagion, networks, sparsity, finan-
cial systems, optimal resource allocation.

1. MOTIVATION, PRIOR LITERATURE, AND OUR
CONTRIBUTIONS

The events of the last few years revealed an acute need for tools
to systematically model and analyze large financial networks.
Many applications of such tools include the forecasting of sys-
temic failures and analyzing probable effects of economic pol-
icy decisions.

We consider the problem of optimizing the amount and
structure of a bailout in a borrower-lender network. Two broad
application scenarios motivate our work: day-to-day moni-
toring of financial systems and decision making during an
imminent crisis. Examples of the latter include the decision
in September 1998 by a group of financial institutions to res-
cue Long-Term Capital Management, and the decisions by the
Treasury and the Fed in September 2008 to rescue AIG and to
let Lehman Brothers fail. The deliberations leading to these
and other similar actions have been extensively covered in the
press. These reports suggest that the decision making processes
could benefit from quantitative methods for analyzing poten-
tial repercussions of contemplated actions. In addition, such
methods could help avoid systemic crises in the first place,
by informing day-to-day actions of financial institutions and
governments.

Forecasting and preventing systemic failures is an open
problem, despite a surge in the research literature during the
last four years. There are two main difficulties. First, the data
on borrower-lender relationships and capital structure of finan-
cial institutions is largely unavailable to academic researchers.
Even the data available to regulators is far from exhaustive and
perfect. Second, the network of financial relationships is very
large, complex, and dynamic.

Notable examples of network topology analysis based on
real data are [1] and [2]. Estimation of the network structure
is used in [3] and [4] to propose a new approach for assessing
systemic financial stability of a banking system.

Often, systemic failures are caused by an epidemic of de-
faults whereby a group of nodes unable to meet their obliga-
tions trigger the insolvency of their lenders, leading to the de-
faults of lenders’ lenders, etc, until this spread of defaults in-
fects a large part of the system. For this reason, many studies
have been devoted to discovering network structures conducive
to default contagion [5, 6, 7, 8, 9]. The relationships between
the probability of a systemic failure and the average connectiv-
ity in the network are investigated in [6, 7, 8]. In addition, [9]
examines other features such as the distribution of degrees and
the structure of the subgraphs of contagious links.

While potentially useful in policymaking, these references
do not provide specific policy recipes. Literature on quanti-
tative models for optimizing policy decisions has focused on
analyzing the efficacy of bailouts and understanding the behav-
ior of firms in response to bailouts. To this end, game-theoretic
models are proposed in [10] and [11] that have two agents: the
government and a single private sector entity. However, the
current state of the art lacks quantitative frameworks to develop
policies for preventing systemic failures in financial networks
that consist of a large number of private-sector agents. The
main contribution of our paper is to propose such a framework.
Specifically, we are interested in addressing the following prob-
lem, given a financial network model.

Problem I: Given a fixed amount of cash C to be in-
jected into the system, how should it be distributed
among the nodes in order to achieve the smallest overall
amount D of unpaid liabilities?

An alternative, Lagrangian, formulation of the same problem,
is to both select C and determine how to distribute it in order
to minimize C +λD, where λ is the cost associated with every
dollar of unpaid liabilities. In this formulation, λ can be used to
model the trade-off between the costs of a bailout (direct costs
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as well as moral hazard) and the costs of defaults.
In this work, we consider a static model with a single ma-

turity date, and with a known network structure. Specifically,
we assume that we know both the amounts owed by every node
in the network to every other node, and the amounts of cash
available at every node. Even for this relatively simple model,
Problem I is far from straightforward, because of a nonlinear
relationship between the cash injection amounts and the loan
repayment amounts. Building upon the results from [12], we
construct algorithms for computing exact solutions for Prob-
lem I and its Lagrangian variant, by showing that both formu-
lations are equivalent to linear programs.

We also consider another problem where the objective is to
minimize the number of defaulting nodes rather than the overall
amount of unpaid liabilities:

Problem II: Given a fixed amount of cash C to be
injected into the system, how should it be distributed
among the nodes in order to minimize the number of
nodes in default, Nd?

For Problem II, we develop an approximate algorithm us-
ing a reweighted ℓ1 minimization approach inspired by [13].
We illustrate our algorithm using two synthetic network struc-
tures for which the optimal solutions can be calculated exactly,
and show through numerical simulations that the solutions cal-
culated by our algorithm are close to optimal.

In Section 2 we describe our model and the results from
prior literature that we use. Our own results—the equivalence
of Problem I to a linear program and the approximate algorithm
for Problem II—are described in Section 3.

2. NOTATION, MODEL, AND BACKGROUND

Our network model is a directed graph with N nodes where
a directed edge from node i to node j with weight Lij > 0
signifies that i owes $Lij to j. This is a one-period model with
no dynamics—i.e., we assume that all the loans are due on the
same date and all the payments occur on that date. We use the
following notation:

• any inequality whose both sides are vectors is component-
wise;

• 0, 1, e, c, p̄, p, q, and r are all vectors in R
N defined

in Table 1;
• D = 1T (p̄− p) is the overall amount of unpaid liabili-

ties in the system;
• Nd is the number of nodes in default, i.e., the number

of nodes i whose payments are below their liabilities,
pi < p̄i;

• Πij is what node i owes to node j, as a fraction of the
total amount owed by node i,

Πij =

 Lij

p̄i
if p̄i 6= 0,

0 otherwise;

• Π and L are the matrices whose entries are Πij and Lij ,
respectively.

Following [12], we make the following assumptions.

• If i’s total funds are at least as large as its liabilities (i.e.,
ri ≥ p̄i) then all i’s creditors get paid in full.

• If i’s total funds are smaller than its liabilities, then i
pays all its funds to its creditors.

Table 1. Notation for several vector quantities.
VECTOR i-TH COMPONENT

0 0
1 1
e ≥ 0 cash on hand at node i
c ≥ 0 external cash injection to node i
p̄ the amount node i owes to all its credi-

tors
p ≤ p̄ the total amount node i actually repays

all its creditors on the due date of the
loans

p̄− p node i’s total unpaid liabilities
q the total amount node i actually receives

from all its borrowers
r = q + e + c the total funds available to i for making

payments to its creditors

• All i’s debts have the same seniority. This means that,
if i’s liabilities exceed its total funds (i.e., ri < p̄i)
then each creditor gets paid in proportion to what it is
owed. This guarantees that the amount actually received
by node j from node i is always Πijpi. Therefore, the
total amount received by any node i from all its borrow-
ers is qi =

PN

j=1 Πjipj .

As defined in [12], a clearing payment vector p is a vector of
borrower-to-lender payments that is consistent with these con-
ditions for given L, e, and c. It is shown in [12] (Theorem 2)
that a unique p exists for any network that satisfies a mild tech-
nical assumption. We restrict our attention to models that sat-
isfy this assumption and therefore have a unique clearing pay-
ment vector p.

3. RESULTS

3.1. Minimizing the amount of unpaid liabilities

Consider a network with a known structure of liabilities L and
a known cash vector e. Using the notation established in the
preceding section, we can see that Problem I seeks to find a
cash injection allocation vector c to minimize the total amount
of unpaid liabilities,

D = 1
T (p̄− p),

subject to the constraint that the total amount of cash injection
is some given number C:

1
T
c = C.

Our first result establishes the equivalence of Problem I and a
linear programming problem.

Theorem 1. Assume that the liabilities matrix L, the cash-on-
hand vector e, and the total cash injection amount C are fixed
and known. Assume that the network satisfies all the conditions
listed above. Then Problem I has a solution which can be ob-
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tained by solving the following linear program:

find c and p to maximize 1
T
p (1)

subject to

1
T
c = C,

c ≥ 0,

0 ≤ p ≤ p̄,

p ≤ ΠT
p + e + c.

Proof. Since the constraints on c and p in linear program (1)
form a closed and bounded set in R

2N , a solution exists. More-
over, for any fixed c, it follows from Lemma 4 in [12] that the
linear program has a unique solution for p which is the clearing
payment vector for the system.

Let (p∗, c∗) be a solution to (1). Suppose that there exists a
cash injection allocation that leads to a smaller total amount of
unpaid liabilities than does c

∗. In other words, suppose that
there exists c

′ > 0, with 1
T
c
′ = C, such that the corre-

sponding clearing payment vector p
′ satisfies 1

T (p̄ − p
′) <

1T (p̄− p∗), or, equivalently,

1
T
p
∗ < 1

T
p
′. (2)

Note that c′ satisfies the first two constraints of (1). Moreover,
since p

′ is the corresponding clearing payment vector, the last
two constraints are satisfied as well. The pair (p′, c′) is thus in
the constraint set of our linear program. Therefore, Eq. (2) con-
tradicts the assumption that (p∗, c∗) is a solution to (1). This
completes the proof that c∗ is the allocation of C that achieves
the smallest possible amount D of unpaid liabilities.

In the Lagrangian formulation of Problem I, we are given
a weight λ and must choose the total cash injection amount C
and its allocation c to minimize C + λD. This is equivalent to
the following linear program:

find C, c, and p to maximize λ1
T
p− C (3)

subject to the same constraints as in (1).

This equivalence follows from Theorem 1: denoting a solution
to (3) by (C∗, p∗, c∗), we see that the pair (p∗, c∗) must be a
solution to (1) for C = C∗. At the same time, the fact that C∗

maximizes the objective function in (3) means that it minimizes
C + λD = C + λ1

T (p̄− p), since p̄ is a fixed constant.

3.2. Minimizing the number of defaults

Given that the total amount of cash injection is C, Problem II
seeks to find a cash injection allocation vector c to minimize
the number of defaults Nd, i.e., the number of nonzero entries
in the vector p̄− p.

We adapt the reweighted ℓ1 minimization strategy approach
from Section 2.2 of [13]. Our algorithm solves a sequence of
weighted versions of the linear program (1), with the weights
designed to encourage sparsity of p̄−p. In the following pseu-
docode of our algorithm, w(m) is the weight vector during the
m-th iteration.

1. m← 0.

2. Select w0 (e.g., w0 ← 1).

3. Solve linear program (1) with objective function re-
placed by p

T
w

(m).

⋯ ⋯
⋯

$2� $2�

 S-1$2
 S-1$2

 S-1$2
 S-1$2

$4 $4 $4 $4

Level s=0 (root)

Level s=1

Level s=S-2

Level s=S-1 (leaves)

Fig. 1. Binary tree network.

4. Update the weights: for each i = 1, · · · , N ,

w
(m+1)
i ←

K

exp
“

p̄i − p
∗(m)
i

”

− 1 + ǫ
,

where K > 0 and ǫ > 0 are constants, and p
∗(m) is the

clearing payment vector obtained in Step 3.

5. If ‖w(m+1) −w
(m)‖1 < δ, where δ > 0 is a constant,

stop; else, increment m and go to Step 3.

Note that nodes for which p̄i − p
∗(m)
i is very small re-

quire very little additional resources to avoid default. This is
why Step 4 is designed to give more weight to such nodes,
thereby encouraging larger cash injections into them. On the
other hand, nodes for which p̄i − p

∗(m)
i is very large require a

lot of cash to become solvent. The algorithm essentially “gives
up” on such nodes by assigning them small weights.

We test the algorithm on two networks for which we know
the optimal solution. First, we use a full binary tree with S
levels and N = 2S − 1 nodes. As shown in Fig. 1, levels 0 and
S−1 correspond to the root and the leaves, respectively. Every
node at level s < S−1 owes $2S−s to each of its two creditors
(children). We set e = 0.

If C < 8, then all 2S−1 − 1 non-leaf nodes are in default,
and the 2S−1 leaves are not in default. In aggregate, the nodes
at any level s < S − 1 owe $2S+1 the nodes at level s + 1.
Therefore, if C ≥ $2S+1, then Nd = 0 can be achieved by
allocating the entire amount to the root node.

For 8 ≤ C < 2S+1, we first observe that if C = 2S+1−s

for some integer s, then the optimal solution is to allocate the
entire amount to a node at level s. This would prevent the de-
faults of this node and all its 2S−s−1− 2 non-leaf descendants,
leading to 2S−1 − 2S−s−1 defaults. If C is not a power of
two, we can represent it as a sum of powers of two and apply
the same argument recursively, to yield the following optimal
number of defaults:

Nd = T (S)−
U

X

u=4

b(u) · T (u− 2),

where T (x) = 2x−1 − 1 is the number of non-leaf nodes in
an x-level complete binary tree, b(u) is the u-th bit in the bi-
nary representation of C (right to left) and U is the number of
bits. To summarize, the smallest number of defaults Nd, as a
function of the cash injection amount C, is:

Nd(C)=

8

>

>

>

<

>

>

>

:

T (S) if C < 8,

T (S)−
U

X

u=4

b(u)T (u − 2) if 8 ≤ C < 2S+1,

0 if C ≥ 2S+1.

(4)
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Fig. 2. Our algorithm for minimizing the number of defaults vs
the optimal solution, for the binary tree network of Fig. 1.
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Fig. 3. Network topology with cycles.

In our test, we set S = 10. The green line in Fig. 2 is
a plot of the minimum number of defaults as a function of C
from Eq. (4). The blue line is the solution calculated by our
reweighted ℓ1-minimization algorithm with K = 1000, ǫ =
0.001 and δ = 0.001. The algorithm was run using six different
initializations: five random ones and w(0) = 1. Among the
six solutions, the one with the smallest number of defaults was
selected. As evident from Fig. 2, the results are very close to
the optimal for the entire range of C.

We also test our algorithm on a network with cycles shown
in Fig. 3. The network contains M cycles with six nodes each.
The nodes in the k-th cycle are denoted nk1, nk2, · · · , nk6.
Node nk1 owes $2a to nk2. Node nk6 owes $a to nk1. For
i = 2, · · · , 5, nki owes $a to nk(i+1). The root node, denoted
as nR, owes $a to nk1, for every k = 1, 2, · · · , M . In order to
satisfy the unique clearing payment vector condition in [12], we
set e = $0.01 < a for nodes nk4 (shown in orange in Fig. 3),
and e = $0 for other nodes.

If C < a, then the root node and all M nodes connected to
the root, nk1(k = 1, 2, · · · , M ), are in default. The remaining
5M nodes are not in default.

If C ≥ aM , then allocating the entire amount C to the root
yields zero defaults.

If a ≤ C < aM , then giving $a to node nk1 will prevent it
from defaulting. Thus, the total number of defaults in this case
is M + 1− [C/a].

Summarizing, for this network structure, the smallest num-
ber of defaults Nd, as a function of the cash injection amount

Fig. 4. Our algorithm for minimizing the number of defaults vs
the optimal solution, for the network of Fig. 3.

C, is:

Nd(C) =

8

<

:

M + 1 if C < a,
M + 1− [C/a] if a ≤ C < aM,
0 if C ≥ aM.

(5)

In Fig. 4, a = 10, M = 100. The green line is a plot of the
minimum number of defaults as a function of C and the result
of the reweighted ℓ1-minimization algorithm for the network
with cycles is illustrated as the blue line with K = 1000, ǫ =
0.001, δ = 0.001. And as same as binary tree example, we run
the algorithm with six different initializations: w

(0) = 1 and
five random ones. From Fig. 4, the results of reweighted ℓ1-
minimization algorithm are also very close to the optimal for
the topology with cycles.

4. FUTURE WORK

No regulatory body ever has full and accurate information
about the books of all financial institutions. Therefore, in
most practical applications, it is unrealistic to assume that the
network structure is known. A more realistic model might
be that the parameters e and L are random variables which
are only partially—and perhaps indirectly—observed. The
total amount of unpaid liabilities and the number of defaults
are then random variables as well, and one might address the
problem of allocating C among the nodes so as to minimize
either the expectations of these random variables or some other
cost functions that depend on the distributions of these random
variables.
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