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ABSTRACT

We propose a novel discrete signal processing framework for the
representation and analysis of datasets with complex structure. Such
datasets arise in many social, economic, biological, and physical net-
works. Our framework extends traditional discrete signal processing
theory to structured datasets by viewing them as signals represented
by graphs, so that signal coefficients are indexed by graph nodes and
relations between them are represented by weighted graph edges.
We discuss the notions of signals and filters on graphs, and define
the concepts of the spectrum and Fourier transform for graph sig-
nals. We demonstrate their relation to the generalized eigenvector
basis of the graph adjacency matrix and study their properties. As a
potential application of the graph Fourier transform, we consider the
efficient representation of structured data that utilizes the sparseness
of graph signals in the frequency domain.

Index Terms— Graph signal processing, graph signal, graph
filter, graph spectrum, graph Fourier transform, generalized eigen-
vectors, sparse representation.

1. INTRODUCTION

Recently we have been observing a growth of interest in the effi-
cient techniques for representation, analysis and processing of large
datasets emerging in various fields and applications, such as sen-
sor and transportation networks, internet and world wide web, im-
age and video databases, and social and economic networks. These
datasets share a common trait: their elements are related to each
other in a structured manner, for example, through similarities or
dependencies between data elements. This relational structure is of-
ten represented with graphs, in which data elements correspond to
nodes, relation between elements are represented by edges, and the
strength or significance of relations is reflected in edge weights.

The analysis and processing of structured data has been stud-
ied in multiple ways. Graph properties, such as degree distributions,
node centrality and betweenness, and clustering, are often used to in-
fer the community structure and interaction in social and economic
networks [1, 2]. Inference and learning of structured datasets can
be performed using graphical models [3, 4] by viewing data ele-
ments as random variables and expressing their probabilistic depen-
dencies between each other with graph edges. Data learning, clus-
tering, and classification has been approached using spectral graph
theory [5]. A common feature of these approaches, however, is that
they analyze the graphs that represents the relational structure of
datasets, rather than the datasets themselves. Another technique for
the representation and spectral analysis of data based on the Lapla-
cian matrix of the graph and its eigenvectors has become popular
recently [6, 7]. This technique is more similar to existing signal
processing approaches, and to our work in particular; however, it is
restricted to undirected graphs with real, non-negative edge weights.

We propose a framework, called discrete signal processing on
graphs (DSPG), for the representation, processing, and analysis of
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structured datasets that can be represented by graphs. Our frame-
work extends the traditional discrete signal processing (DSP) the-
ory that studies signals with linear structure, such as time series and
space signals. e.g. images, to signals with complex, non-linear struc-
ture. We discuss the notions of signals and filters on graphs, and
then define the concepts of spectral decomposition, spectrum, and
Fourier transform for graph signals. We identify their relation to the
generalized eigenvectors of the adjacency matrices of representation
graphs and study their properties. As a potential application of the
graph Fourier transform, we consider efficient data representation
and compression. In particular, we demonstrate that if a graph sig-
nal is sparsely represented in the spectral domain, i.e. its frequency
content is dominated by few frequencies, then it can be efficiently
approximated with only a few spectrum coefficients.

2. SIGNALS AND FILTERS ON GRAPHS

In this section we discuss the notions of graph signals and filters.
These concepts are defined and studied in [8].

Graph signals. If we consider a quantitative dataset for which
we are given information about the relationship between its elements,
we can represent it as a numerical-valued signal indexed by a graph.
For example, for a set of sensor measurements, the relation between
measurements from different sensors can be expressed through the
physical distance between sensors. For a collection of researchers
and their publication records, the relation can be given by their col-
laborations and publication coauthoring. Assuming that the dataset
is finite, we can treat it as a set of vectors

S =
{
s : s = (s0, . . . , sN−1)

T
, sn ∈ C

}
. (1)

Then, we can represent the relation between coefficients sn of s with
a graph G = (V,A), so that V = {v0, . . . , vN−1} is a set of N
nodes, and A is a N × N weighted adjacency matrix. Each coef-
ficient sn corresponds to (is indexed by) node vn, and the weight
An,m of the directed edge from vm to vn expresses the degree of re-
lation of sn to sm. Note that edge weights An,m can take arbitrary
real or complex values (for example, if data elements are negatively
correlated). We call a signal s indexed by a graph G a graph signal.

Graph signals, in general, can be complex-valued. Furthermore,
they can be added together and scaled by constant coefficients. Hence,
they form a vector space. If no additional assumptions are made
on their values, the set S of graph signals corresponds to the N -
dimensional complex vector space S = C

N .
We illustrate representation graphs with several examples. The

graph in Fig. 1(a) represents a finite, periodic discrete time series [9,
10]. It is a directed, cyclic graph, with directed edges of the same
weight, reflecting the causality of a time series. The periodicity of
the time series is captured by the edge from vN−1 to v0. The two-
dimensional rectangular lattice graph in Fig. 1(b) represents a digital
image. Each pixel corresponds to a node that is connected to the
nodes that index its four adjacent pixels. This relation is symmetric,
hence all edges are undirected. If no additional information is avail-
able, all edge weights an and bm are equal, with a possible excep-
tion of boundary nodes which may have directed edges and different
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Fig. 1. Graph representations for different datasets.

edge weights due to imposed boundary conditions [9, 11]. Edge
weights an and bm, however, can be optimized for better image rep-
resentation, as we show in Section 4. Finally, the graph in Fig. 1(c)
represents temperature measurements from weather stations located
across the United States. We represent the relations between tem-
perature measurements of different sensors by geodesic distances
between these sensors, and connect each node to nodes that corre-
spond to several most closely located sensors. We discuss the latter
example in more detail in Section 4.

Graph filters. In DSP, filters are systems that take a signal as
an input and produce another signal as the output. In DSPG, we
define an equivalent concept of filters for the processing of graph
signals. Given graph signals s indexed by a graph G = (V,A),
the basic building block for graph filters on G is a graph shift that
replaces each signal coefficient sn indexed by node vn with a linear
combination of coefficients at other nodes weighted proportionally
to the degree of their relation:

s̃n =

N−1∑

m=0

An,msm ⇔ s̃ = As. (2)

Similarly to traditional linear, time-invariant DSP theory, we
consider linear, shift-invariant filters for graph signals. As demon-
strated in [8], any linear, shift-invariant graph filter is necessarily a
matrix polynomial in the adjacency matrix A of the form

h(A) = h0 I+h1A+ . . .+ hLA
L
, (3)

with possibly complex coefficients hℓ ∈ C. Furthermore, any graph
filter (3) can be represented by at most N coefficients; and if it is in-
vertible, its inverse also is a matrix polynomial in A of the form (3).

3. GRAPH FOURIER TRANSFORM

Having defined the concepts of graph signals and filters, we now
discuss the spectral decomposition, spectrum, and Fourier transform
for graph signals. These concepts are related to the Jordan normal
form of the adjacency matrix A; this topic is discussed in [12].

Spectral decomposition. The spectral decomposition of a sig-
nal space S corresponds to the identification of subspaces Sk, 0 ≤
k < K, of S that are invariant to filtering. For a signal sk ∈ Sk

from a subspace Sk, the output s̃k = h(A)sk of any filter h(A) is
also a signal from the same subspace Sk. The signal s ∈ S then can
be represented as

s = s0 + s1 + . . .+ sK−1, (4)

where sk ∈ Sk. Decomposition (4) is uniquely determined for every
graph signal s ∈ S if and only if 1) invariant subspaces Sk have
zero intersection, i.e., Sk ∩ Sm = {0} for any k 6= m; 2) dimS0 +
. . .+ dimSK−1 = dimS = N ; and 3) each Sk is irreducible, i.e.,
it cannot be decomposed into smaller invariant subspaces.

Consider the Jordan decomposition of A:

A = VJV
−1

. (5)

Here, J is the Jordan normal form and V is the matrix of general-
ized eigenvectors. Let λm denote an arbitrary eigenvalue of A, and
vm,0, . . . ,vm,r denote a Jordan chain of generalized eigenvectors
corresponding to this eigenvalue. Then Sm = span{vm,0, . . . ,vm,r}
is a vector subspace of S with this Jordan chain as its basis. Any sig-
nal sm ∈ Sm has a unique expansion in this basis:

sm = ŝm,0vm,0 + . . .+ ŝm,rvm,r

= Vm

(
ŝm,0 . . . ŝm,r

)T
.

Here, Vm is a matrix with columns given by vm,0, . . . ,vm,r. It
follows from (5) that if we apply the graph shift (2) to sm, the output
ŝm = Asm also belongs to the same subspace:

ŝm = Asm = AVm

(
ŝm,0 . . . ŝm,r

)T

= Vm J(λm)
(
ŝm,d,0 . . . ŝm,r

)T

= Vm




λmŝm,0 + ŝm,1

...
λmŝm,r + ŝm,r

λmŝm,r


 , (6)

where J(λm) is a Jordan block corresponding to λm. Thus, the
subspace Sm is invariant to shifting. It also follows from (6) that
Sm is irreducible.

Furthermore, any graph filter (3) can be written as

h(A) =
L∑

ℓ=0

hℓ(VJV
−1)ℓ =

L∑

ℓ=0

hℓ VJ
ℓ
V

−1

= V
( L∑

ℓ=0

hℓ J
ℓ
)
V

−1 = V h(J)V−1
. (7)

Similarly to (6), filtering a signal sm ∈ Sm produces an output from
the same subspace:

ŝm = h(A)sm = h(A)Vm

(
ŝm,0 . . . ŝm,r

)T

= Vm


h(J(λm))



ŝm,0

...
ŝm,r





 . (8)

Since A has exactly N generalized eigenvectors, and they are
linearly independent, all subspaces Sm are irreducible, have zero
intersections, and their dimensions add up to N . Hence, they yield
the spectral decomposition of the signal space S .
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Graph Fourier transform. The spectral decomposition of S
expands each signal s ∈ S in the basis given by the union of all
generalized eigenvectors. This expansion can be written as

s = V ŝ, (9)
where the vector of expansion coefficients is given by

ŝ = V
−1

s. (10)
We call the basis of generalized eigenvectors the graph Fourier ba-
sis, and the expansion (10) the graph Fourier transform. We denote
the graph Fourier transform matrix as

F = V
−1

. (11)

Following the conventions of classical DSP, we call the coefficients
ŝn in (10) the spectrum of a signal s. The inverse graph Fourier
transform is given by (9); it reconstructs the signal from its spectrum.

Discussion. The connection (10) between the graph Fourier
transform and the Jordan decomposition (5) highlights some desir-
able properties of representation graphs. For instance, graphs with
orthogonal or unitary matrices V of generalized eigenvectors, in-
cluding all undirected graphs, have orthogonal graph Fourier trans-
forms: F−1 = FH . This property has significant practical impor-
tance, since, for example, orthogonal transforms are well-suited for
efficient signal representation, as we demonstrate in Section 4.

Also, observe that the definition (10) of graph Fourier transform
is consistent with the traditional DSP theory. As we discussed in
Section 2, finite discrete periodic time series are indexed by the di-
rected graph in Fig. 1(a). The corresponding adjacency matrix is
the N × N circulant matrix A for which An,m is 1 if n −m = 1
mod N and 0 otherwise. Its eigendecomposition (and hence, Jordan
decomposition) is

A = DFT
H
N




e−j 2π·0
N

. . .

e−j
2π·(N−1)

N


DFTN ,

where DFTN denotes the discrete Fourier transform matrix. Thus,
as expected, the graph Fourier transform is F = DFTN .

This example also illustrates an important difference between
our proposed definition (10) of graph Fourier transform and a sim-
ilar definition of graph Fourier transform used in [6, 7]. The lat-
ter one uses the eigenbasis of the Lagrangian matrix for the index-
ing graph, and assumes that the graph is undirected and has non-
negative real weights. Thus, it is not applicable to traditional time
DSP and the derivation of the standard discrete Fourier transform, or
other datasets indexed by directed graphs, such as a set of documents
linked by references [13], or graphs with negative weights [14].

In time DSP, the concepts of spectrum and Fourier transform
have natural, physical interpretations. In DSPGthese concepts may
have drastically different and not immediately obvious interpreta-
tions. For example, if a graph signal represents measurements from
multiple sensors and the indexing graph reflects their proximity in
some metric (such as time, space, or geodesic distance), then fil-
tering this graph signal linearly recombines related measurements.
It can be viewed as a graph form of regression analysis with con-
stant coefficients. The graph Fourier transform then decomposes the
signal over equilibrium points of this regression. Alternatively, a
graph signal may contain a characteristic of a social network, such
as an opinion or a preference of individuals, and the indexing graph
represents this social network. In this case filtering can be viewed
as the diffusion of this characteristic along existing communication
channels in the network, and the graph Fourier transform can be in-
terpreted as the representation of the signal in terms of stable, un-
changeable opinions or preferences.

4. SPECTRAL REPRESENTATION OF GRAPH SIGNALS

Efficient signal representation is required in multiple areas of signal
processing, such as storage, compression, and transmission. Some
widely-used techniques are based on expanding signals into suitable
bases with the expectation that most information about the signal is
captured with few basis functions. For example, some image com-
pression standards, e.g. JPEG and JPEG 2000, expand images into
cosine or wavelet bases, which yield high-quality approximations for
smooth images [15].

If a representation basis corresponds to a Fourier basis in some
signal model, we say that signals are sparse in the frequency do-
main if their spectrum is dominated by only a few frequencies, i.e.
they are accurately approximated by a few Fourier basis functions.
As we demonstrate in the following examples, graphs signals can
be sparse in their respective frequency domain, which makes their
Fourier bases useful for efficient signal representation and compres-
sion1. For simplicity of the discussion and calculations, we consider
signals represented by undirected graphs. In this case, as discussed
in Section 3, corresponding graph Fourier transforms are orthogonal
matrices, and the Fourier bases are orthogonal. The advantage of an
orthogonal basis is that selecting spectrum components with largest
magnitudes minimizes the approximation error in the least-squares
sense. The approach discussed here also extends to directed graphs
with general Fourier bases.

Compression algorithm. Given an orthogonal graph Fourier
basis, we compress a graph signal s by keeping only C of its spec-
trum coefficients (10) ŝn that have largest magnitudes. Without loss
of generality, assume that |̂s0| ≥ |̂s1| ≥ . . . ≥ |̂sN−1|. Then the
signal reconstructed after compression is

s̃ = F
−1 (̂s0, . . . , ŝC−1, 0, . . . , 0)

T
. (12)

If for 0 ≤ k < K, signals sk are approximated as s̃k, each with
C largest-magnitude coefficients of their spectrum, we calculate the
average approximation error as

err(C) =

∑K−1

k=0
||̃sk − sk||2∑K−1

k=0
||sk||2

. (13)

Image compression. As the first example, we consider the graph
representation of images using the graph in Fig. 1(b). As follows
from the figure, we make a simplifying assumptions that edge weights
depend only on their row or column, as shown. Then, given a specific
image, we determine the edge weights an and bm by minimizing the
distortion caused by the graph shift:

{
a0, . . . , aN−2,

b0, . . . , bM−2

}
= argmin

an,bm∈C

||As − s||2.

Here, s is a vectorized representation of the image. As demonstrated
in [17], this is a least-squares minimization problem.

For the evaluation of this image representation technique, we
consider K = 4 images shown in Fig. 2, all of size 256 × 256.
Table 1 shows average errors (13) obtained for different fractions
of spectrum coefficients used for approximation. For comparison,
we also consider three standard orthogonal transform: the discrete
Fourier (DFT), cosine (DCT), and wavelet (DWT) transforms. As
can be observed from the results, the graph Fourier transform leads
to smallest errors regardless of the number of spectrum coefficients
used for approximation.

1Eigenvectors of the graph Laplacian matrix have also been considered
for the compression of graph signals [16]. In contrast, our approach use the
generalized eigenvectors of the graph adjacency matrix.
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Fig. 2. Test images.

Transform
Fraction of coefficients used (C/N )

2% 5% 10% 15% 20% 30%

Graph FT 10% 5% 2% 1% 1% 0.5%

DFT 14% 8% 5% 3% 2% 1%

DCT 12% 6% 3% 2% 2% 1%

DWT 12% 6% 3% 2% 1% 1%

Table 1. Average approximation errors for digital images.

Compression of sensor measurements. Another example we
consider is the representation of measurements from a non-uniformly
distributed sensor field. In particular, we consider a set of daily tem-
perature measurements from weather stations located near 150 ma-
jor US cities [18]. Data from each sensor is a separate time series;
however, compressing each time series separately requires buffering
measurements from multiple days before they can be compressed
for storage or transmission. Instead, we consider graph signals con-
structed from daily snapshots of all 150 measurements. We con-
struct the representation graph, shown in Fig. 1(c), using geograph-
ical distances between sensors. Each sensor corresponds to a node
vn, 0 ≤ n < 150, and is connected to 8 nearest sensors with undi-
rected edges weighted by the normalized inverse exponents of the
squared distances: if dnm denotes the distance between the nth and
mth sensors and vm is connected to vn, then

An,m =
e−d2

nm

√∑
k∈Nn

e−d2
nk

∑
k∈Nm

e−d2
mk

. (14)

We consider a full year of 365 daily measurements from each
sensor, and evaluate the representation efficiency by calculating the
average approximation error (13) over K = 365 days. For com-
parison, we also consider compressing each separate time series of
measurements from each station with DFT and DCT, and calculat-
ing average errors over K = 150 stations. The results are shown in
Table 2. The graph Fourier transform yields smallest errors for all
fractions of spectrum coefficients used for approximation.

Transform
Fraction of coefficients used (C/N )

2% 5% 10% 15% 20% 30%

Graph FT 17% 9% 5% 4% 3% 1%

DFT 18% 14% 10% 7% 5% 3%

DCT 17% 12% 8% 5% 4% 2%

Table 2. Average approximation errors for temperature data.

5. CONCLUSIONS

We have proposed a framework for discrete signal processing of sig-
nals indexed by graphs. We discussed the notions of graph signals
and filters, and defined the concepts of spectral decomposition, spec-
trum, and Fourier transform for graph signals. We identified their re-
lation to the Jordan decomposition of the adjacency matrices of rep-
resentation graphs. As a potential application of the graph Fourier
transform, we demonstrated that graph signals can be sparsely repre-
sented in their frequency domain, and thus efficiently approximated
using a few Fourier basis functions with little approximation error.
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