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ABSTRACT

Independent component analysis (ICA) is a widely used sig-
nal processing tool having applications in various fields of sci-
ence. In this paper we focus on affine equivariant ICA meth-
ods. Two such well-established estimation methods, FOBI
and JADE, diagonalize certain fourth order cumulant matri-
ces to extract the independent components. FOBI uses one
cumulant matrix only, and is therefore computationally very
fast. However, it is not able to separate identically distributed
components which is a major drawback. JADE overcomes
this restriction. Unfortunately, JADE uses a huge number
of cumulant matrices and is computationally very heavy in
high-dimensional cases. In this paper, we hybridize these two
methods. The affine equivariant FOBI estimate is used as an
initial value for JADE, and only a small subset of most infor-
mative cumulant matrices is then diagonalized. In simulation
studies we show that the new affine equivariant estimate is al-
most as good as JADE, and it is computationally much faster.

Index Terms— FOBI, Independent component analysis,
Minimum distance index, SHIBBS

1. INTRODUCTION

The basic independent component (IC) model assumes that
the observed p-variate random vector x = (x1, . . . , xp)′ is
generated by

x = As, (1)

where A is a full rank p × p mixing matrix and s =
(s1, . . . , sp)′ is the unobserved random vector of p mutu-
ally independent sources. We also assume that

(A1) E(si) = 0 and E(s2i ) = 1, for i = 1, . . . , p.

(A2) At most one of the source components is gaussian.

In independent component analysis (ICA) the aim is to
use observations X = (x1, . . . ,xn) from the distribution
of x to find an estimate Ŵ of an unmixing matrix W such
that Wx has independent components. Recall that A and s
in model (1) are confounded in the sense that the order and

signs of the components of s (and the columns of A) are not
uniquely defined. Write

C = {C : each row and column of C has exactly one
non-zero element.}.

(2)

Then, if W is an unmixing matrix in model (1), so is CW
for any C ∈ C. We say that W1 and W2 are equivalent if
W1 = CW2 for some C ∈ C, and write W1 ∼W2.

Let W (Fx) be the value of an unmixing matrix (func-
tional) at the distribution Fx of x. In independent compo-
nent analysis it is usually required that the separation result
z = W (Fx)x does not depend on the mixing matrix A. This
is formalized in the following definition. See also [1].

Definition 1 Let Fx denote the cdf of x. The functional
W (Fx) is an IC functional if (i) W (Fs) ∼ Ip for any s with
independent components and at most one gaussian compo-
nent, and (ii) W (Fx) is affine equivariant in the sense that
W (FBx) ∼W (Fx)B−1 for all full rank p× p matrices B.

The corresponding estimator Ŵ = W (X) is obtained
when the IC functional is applied to the empirical dis-
tribution function of X = (x1, . . . ,xn). Naturally, the
estimator is then also affine equivariant in the sense that
Ŵ (BX) ∼ Ŵ (X)B−1.

One of the first methods to solve the ICA problem was
the so called FOBI (fourth order blind identification) estimate,
see [2]. The affine equivariant FOBI functional diagonalizes
both the covariance matrix and a certain matrix of fourth mo-
ments. It was noticed later ([3]) that a better performance is
obtained if a large number of fourth moments matrices are
simultaneously used in the estimation. In JADE, p2 fourth
moment matrices are selected so that the procedure is affine
equivariant in the sense of Definition 1. The drawback of
the JADE (joint approximate diagonalization of eigenmatri-
ces) method is that, due to a huge number of matrices to be
diagonalized, it cannot be applied to high-dimensional data
sets.

In this paper, we propose a simple affine equivariant IC
functional that combines FOBI and JADE. The structure of
the paper is the following. In Section 2 we first recall the clas-
sical fourth moment based methods and an earlier approach to
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speed up JADE in high-dimensional cases. In Section 3 a new
estimator hybridizing FOBI and JADE is proposed. The ef-
ficiencies and computation times of different estimators are
compared in simulation studies in Section 4.

Throughout the paper, we use the following notation. For
a p × p matrix A, diag(A) is a diagonal matrix with the
same diagonal elements as A and off(A) = A − diag(A).

‖A‖ =
√∑p

i=1

∑p
j=1A

2
ij is the matrix (Frobenius) norm

of A. Also, ei is a p-vector with ith element one and other
elements zero, i = 1, . . . , p, and Eij = eie

T
j , i, j = 1, . . . , p.

2. SOME IC FUNCTIONALS BASED ON FOURTH
ORDER CUMULANTS

For notational simplicity, we assume that, in the model (1),
E(x) = E(s) = 0. Write Cov(x) = E(xxT ) for the covari-
ance matrix, and z = Cov(x)−1/2x for the whitened random
vector. Consider first the p× p matrix of fourth moments

Cov4(x) = E
[
(xT x)xxT

]
.

We then have the following definition, see [2].

Definition 2 The FOBI functional is defined as follows.

1. Whiten the data: z = Cov(x)−1/2x.

2. Find an orthogonal matrix U to minimize

D(U) =
∥∥off

(
UCov4(z)UT

) ∥∥2
.

3. The FOBI functional is then W = U Cov(x)−1/2.

When does the FOBI functional find the latent indepen-
dent components s1, . . . , sp? First note that

Cov4(s) =
p∑

i=1

(β2,i + p+ 2)Eii

where β2,i = E(s4i )−3. Moreover Cov4 is equivariant under
orthogonal transformations so that

Cov4(Us) = UCov4(s)UT

for all orthogonal matrices U . As z = V s for some orthogo-
nal V , the FOBI functional is an IC functional if all kurtosis
values β2,i are distinct. However, the equality of some kurto-
sis values has no effect on the separation of the components
with distinct kurtosis values. As the second step simply finds
the matrix of eigenvectors of Cov4(z), FOBI is computation-
ally highly efficient. However, the inability to separate com-
ponents with identical kurtosis values, e.g. iid components, is
a major drawback.

JADE [3] overcomes the restrictions of FOBI. In JADE,
one considers p2 fourth moment matrices

Cij(x) = E[(zTEijz)zzT ]− Eij − ET
ij − tr(Eij)Ip,

i, j = 1, . . . , p. Note that FOBI uses only

Cov4(x) =
p∑

i=1

Cii(x) + (p+ 2)Ip.

We then have the following definition, see [3].

Definition 3 The JADE functional is defined as follows.

1. Whiten the data: z = Cov(x)−1/2x.

2. Find an orthogonal matrix U to minimize

D(U) =
p∑

i=1

p∑
j=1

∥∥off
(
UCij(z)UT

) ∥∥2
.

3. The JADE functional is then W = U Cov(x)−1/2.

It is easy to see that

Cij(s) = 0, for i, j = 1, . . . , p and i 6= j and
Cii(s) = β2,iEii, for i = 1, . . . , p.

The matrices Cij are not equivariant under orthogonal trans-
formations but, surprisingly, the optimization at step 2 is ro-
tation equivariant: If U is the minimizer for z then UV T

is a minimizer for V z for all orthogonal V . Again, as the
whitened z = V s for some orthogonal V , the JADE func-
tional is an IC functional if at most one of the kurtosis values
β2,i are zero. (If si is gaussian then β2,i = 0.)

For practical data sets, the p2 matrices can of course be di-
agonalized only approximately. There are several algorithms
available for a simultaneous diagonalization of several sym-
metric non-negative definite matrices, and the properties of
the estimate depend on the chosen algorithm. In our simu-
lation studies, we use a symmetric algorithm based on the
Jacobi rotation technique suggested in [4].

The JADE estimator is affine equivariant provided that all
the p2 cumulant matrices are included. The statistical prop-
erties of the JADE estimator will be studied in detail in an
extended version of this paper. Obviously Cij = Cji, and
thus only p(p+ 1)/2 matrices need to be diagonalized. Nev-
ertheless, JADE becomes computationally heavy as p grows
(see also Section 4).

To reduce computation time of JADE, [5] suggested the
SHIBBS (Shifted Block Blind Seperation) algorithm:

Definition 4 The SHIBBS functional is defined as follows.

1. Whiten the data: z = Cov(x)−1/2x,
and choose an initial value U .

2. Repeat the following two steps until convergence:

• Find an orthogonal matrix V to minimize

D(V ) =
p∑

i=1

||off(V Cii(Uz)V T )||2.
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• U = V U

3. The SHIBBS functional is then W = U Cov(x)−1/2.

Compared to JADE, SHIBBS reduces the number of op-
erations if the number of iterations at stage 2 is small relative
to p. It is not clear, however, whether the SHIBBS estimate
is affine equivariant. For small sample sizes, the convergence
to the global optimum cannot be guaranteed. For large (de-
pending on the components and on the validity of the model)
number of observations this problem seems to vanish.

3. A NEW EQUIVARIANT ESTIMATOR BASED ON
FOURTH ORDER CUMULANTS

In [5] Cardoso noticed that SHIBBS and JADE algorithms
separate the sources almost identically, and the simulation re-
sults in section 4 support that. This suggests that the use
of matrices Cii, i = 1, . . . , p, may be sufficient in practice.
Also, if one is close to the solution then, for a small k, the
matrices Cij , |i− j| < k, may carry most of the information
for further steps towards the correct solution. To find a good
initial solution, one can then use the affine equivariant FOBI
algorithm. This is done in the following definition of a new
k-JADE functional.

Definition 5 The k-JADE functional is defined as follows.

1. Whiten the data: z = Cov(x)−1/2x.

2. Find an orthogonal matrix U to minimize

D(U) =
∥∥off

(
UCov4(z)UT

) ∥∥2
.

Write z∗ = Uz (FOBI solution).

3. Find an orthogonal matrix V to minimize

D(V ) =
∑
|i−j|<k

∥∥off
(
V Cij(z∗)V T

) ∥∥2
.

4. The k-JADE functional is then W = V U Cov(x)−1/2.

The first remark is that p-JADE is equivalent to regular
JADE. Recall that FOBI separates only components with dis-
tinct kurtosis values. Therefore, if ith and (i + 1)th largest
kurtosis values of the components are equal, then, after the
FOBI step, one can expect that Cii(z∗) and Ci+1,i+1(z∗) (as
well as Ci,i+1(z∗)) are useful for separating these two com-
ponents. It is shown in the simulation study that the perfor-
mance of k-JADE in separating identically distributed com-
ponents is superior as compared to the performance of FOBI.
When choosing k, there is obviously a trade-off between the
efficiency and the computation time. The equivariance of k-
JADE follows from the equivariance of FOBI.

4. SIMULATION STUDY

All simulations in this paper are done using R 2.15.1 [6] and
the package JADE [7].

The performances of FOBI, JADE, SHIBBS and k-JADE
were compared in three different models. In model (i) there
were four different source components with uniform, normal,
t8- and t5-distributions. The ten source components in model
(ii) were all t5-distributed. In model (iii) there were two uni-
formly and two t5-distributed components. The source com-
ponents were centered and scaled to have zero means and unit
variances. To compare the estimates, 10000 random samples
of size n = 10000 were generated from all three models.

To measure the performance of the estimators we used the
minimum distance (MD) index [8] defined by

D̂ = D(ŴA) =
1√
p− 1

inf
C∈C
‖CŴA− Ip‖ (3)

with the matrix (Frobenius) norm ‖ · ‖ and C as defined in (2).
The minimum distance index is affine invariant and it is scaled
to have a maximum value 1. Notice also that D̂ = 0 iff
ŴA ∼ Ip indicating a perfect separation of the components.

The simulation results are given in Figure 1. The figure
shows that if the source components are different, FOBI
yields reasonable unmixing matrix estimates and conse-
quently estimates based on 1-JADE perform as well as JADE.
In model (iii) with two identically distributed pairs of compo-
nents, 2-JADE seems to be sufficient. 1-JADE produces good
estimates most of the time, but it “fails” sometimes. Finally,
1-JADE does not break down even though FOBI estimates are
poor, and 2-JADE is already quite close to JADE. In all three
models the differences between JADE, SHIBBS and 2-JADE
seem rather minimal so that computational efficiency might
provide a reason for which method to choose.

To compare computation times of JADE, SHIBBS, 1-
JADE, 2-JADE and FOBI we used model (ii) with identi-
cal t5 distributions but with the different dimensions p =
5, 6, . . . , 59, 60, 70, 80, 90, 100. Figure 4 shows, on a log
scale, the average computation time based on 50 runs on a
Intel(R) Xeon(R) CPU X5650 with 2.67GHz and 24GB of
memory running a 64-bit RedHat Linux. For JADE, SHIBBS,
1-JADE and 2-JADE the convergence criterion used in this
simulation study was that ||Uk+1 − Uk|| ≤ ε = 0.0001.

The figure shows clearly that JADE is not really practi-
cal for data with large number of dimensions. In compari-
son SHIBBS needs much less computation time than JADE
but both are clearly slower than 1-JADE and 2-JADE. The
difference of 1-JADE and 2-JADE on the contrary is rather
minor and for example the average computation for 1-JADE
is 85.31s, for 2-JADE 142.53s, for SHIBBS 520.30s and for
JADE 2453.20s for p = 100. Since FOBI is basically just
an eigenvalue eigenvector decomposition it is of course much
faster than any of the other methods but lacks on the other
side in performance quality.
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Fig. 1. Comparison of JADE, SHIBBS, 1-JADE, 2-JADE and FOBI estimators in models (i)-(iii) [from left to right] using D̂
performance index. The horizontal line indicates the average index value of a random guess. The values are plotted in log scale
to make the differences visible.
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Fig. 2. Average computation time in seconds of JADE,
SHIBBS, 1-JADE, 2-JADE and FOBI on log scale for dif-
ferent dimensions p.

5. DISCUSSION

FOBI and JADE are two well-known ICA methods. In this
paper we show some connections between the two methods
which explain the well-known fact that JADE has a better
performance. Although JADE is a popular method, it suf-
fers from the problem of being computationally expensive
for high-dimensions. The computational cost is due to the
need to compute p(p+ 1)/2 cumulant matrices. While it was
early recognized that not all the cumulant matrices are actu-

ally needed, JADE loses affine equivariance if not all of them
are used. In SHIBBS algorithm only p cumulant matrices are
used. However they need to be computed repeatedly, which
seems to provide only little time gain in computation time. In
this paper we introduced a new k-JADE method which starts
with FOBI and then jointly diagonalizes only a limited num-
ber of cumulant matrices controlled by the value of k. The
new method is affine equivariant and at least in our simulation
studies for k = 2 almost as efficient as JADE and SHIBBS,
however much faster. The new method thus provides a very
efficient tool for practical data analysis. Notice that the equiv-
ariance problems of SHIBBS can be avoided by using the
same FOBI based whitening as in k-JADE. Another aspect
we will pursuit is to study how the choice of the joint diag-
onalization method affects on performance and computation
times of the different algorithms. In an extended version of
this paper we also plan to derive the asymptotic distribution
of JADE and k-JADE.

6. RELATION TO PRIOR WORK

FOBI and JADE are well-established ICA methods with a
rich literature in recent years. FOBI was generalized and ro-
bustified in [9, 10] by using any two scatter functionals hav-
ing so called independence property. The asymptotic distri-
bution of FOBI was derived in [11]. Two considerations to
speed up JADE were proposed for example by Cardoso and
Souloumiac in [3] or as SHIBBS in [5]. However, Cardoso
himself recommends against his approach in [3]. SHIBBS
was reintroduced as SJAD in [12] and in [13] the authors ar-
gue that the computation time of SHIBBS/SJAD can be re-
duced by relating the convergence criterion to the signal to
noise ratio. The limiting distribution of JADE (but without
the whitening step) was considered in [14].
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