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ABSTRACT

Markov Chain Monte Carlo methods are widely used in sig-
nal processing and communications for statistical inference
and stochastic optimization. In this work, we introduce an ef-
ficient adaptive Metropolis-Hastings algorithm to draw sam-
ples from generic multimodal and multidimensional target
distributions. The proposal density is a mixture of Gaussian
densities with all parameters (weights, mean vectors and co-
variance matrices) updated using all the previously generated
samples applying simple recursive rules. Numerical results
for the one and two-dimensional cases are provided.

Index Terms— Markov Chain Monte Carlo (MCMC),
Gaussian mixtures, adaptive Metropolis-Hastings

1. INTRODUCTION

Markov Chain Monte Carlo (MCMC) methods [1, 2] are
ubiquitously used for performing inference and solving opti-
mization problems in many scientific fields: statistics, digital
communications, machine learning, signal processing, etc.
[3, 4, 5, 6]. MCMC approaches are able to generate samples
virtually from any target distribution (known up to a nor-
malizing constant) by using a simpler proposal distribution.
The basic underlying idea of standard MCMC techniques is
producing a Markov chain that converges to the target.

The most famous MCMC technique is the Metropolis-
Hastings (MH) algorithm [7, 8, 3]. However, the main draw-
back of the MH method (and in general of all MCMC meth-
ods) is that the correlation among the samples in the Markov
chain can be very high when the acceptance rate is low [1,
2, 9]. Correlated samples provide less statistical information
and the resulting chain can remain trapped almost indefinitely
in a local mode, meaning that convergence can be extremely
slow. Therefore, since the correlation depends on the discrep-
ancy between the target and proposal distributions, we would
like the proposal to be as close to the target as possible.

Several extensions have been proposed in the literature to
speed up the convergence and reduce the so called “burn-in”
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period. Among them, adaptive MH methods (i.e., MH algo-
rithms with adaptive proposal distributions) are particularly
interesting [2, 10]. Indeed, MCMC techniques usually need
the selection of several parameters by the user before they can
be applied to any particular problem. The use of adaptive pro-
posals overcomes this issue, providing black-box algorithms
with self-tuning capabilities. An adaptive MH technique im-
proves the proposal distribution by learning at least some of
its parameters from all the previously generated samples. Un-
fortunately, an important problem with the adaptation of the
proposal is that the Markov property is lost and the invariant
distribution of the chain could be disturbed. Hence, adaptive
MH algorithms must be carefully designed to avoid this issue.

The adaptive Metropolis (AM), a random walk MH algo-
rithm using an adaptive Gaussian proposal, was introduced
in [11]. The covariance matrix of the proposal is updated
using recursive empirical estimators applied to the samples
generated by the chain. The AM algorithm is an example of
a partially adaptive MH approach, since it only updates the
covariance of the proposal, whereas the mean of the Gaussian
jumps to the current state of the chain at each iteration. An
attempt of extending the AM algorithm by using a mixture
of Gaussians as a proposal and updating all of its parameters
(thus obtaining a fully adaptive MH algorithm) can be found
in [12]. However, the resulting algorithm is quite compli-
cated, and the proposal is only updated at some iterations.

In this work, we introduce an independent MH technique
where the proposal PDF is an adaptive mixture of Gaussians.
All the parameters (weights, means and covariance matrices)
of the Gaussians in the mixture are updated using empirical
estimators with simple recursive formulas (i.e., our method
is fully adaptive). After a training period, the proposal is
adapted at every iteration. The resulting AGM-MH algorithm
can be used to draw samples from arbitrary multimodal and
multidimensional targets, always improving the performance
w.r.t. a non-adaptive MH scheme using the initial proposal.

The rest of the paper is organized as follows. Section 2
shows the problem formulation. Section 3 presents the pro-
posed AGM-MH algorithm. Sections 4 and 5 describe effi-
cient parameter update rules and black-box usage. Finally,
Sections 6 and 7 show the results and conclude the paper.
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2. PROBLEM FORMULATION

Let us assume that we need to draw samples from a (possibly
multimodal) generic d-dimensional target probability density
function (PDF), po(x), with support D ⊆ Rd. The AM al-
gorithm [11] uses an adaptive random walk MH with a Gaus-
sian proposal, mean equal to the previous state of the chain
(µ = xt−1), and covariance matrix, C, estimated from all
previous states, i.e., q(x|xt−1,C) ∝ N (x|xt−1,C), where

N (x|µ,C) ∝ exp
(
−1

2
(x− µ)>C−1(x− µ)

)
(1)

denotes a standard multivariate Gaussian PDF. In order to im-
prove the performance of the AM algorithm, here we consider
a mixture of N Gaussians as the proposal PDF, i.e.,

q(x|w,µ1:N ,C1:N ) =
N∑

i=1

wiN (x|µi,Ci), (2)

where N (x|µi,Ci) is given by (1), µi = [µi,1, ..., µi,d]>

is the d × 1 mean vector, Ci is the d × d positive definite
covariance matrix, and w = [w1, ..., wN ]> are the normal-
ized weights (i.e., w1 + ... + wN = 1). Moreover, we define
µ1:N = [µ1, ...,µN ] and C1:N = [C1, ...,CN ]. We note that
our approach is a fully adaptive MH algorithm, since (unlike
the AM algorithm, which only updates the covariance) all the
parameters in the mixture are learnt from all the previously
generated samples. The resulting algorithm is very simple,
since the adaptation is based on empirical estimators that can
be implemented efficiently using recursive formulas.

Since the adaptation could disturb the convergence of the
generated chain to the target PDF, we consider the possibility
of stopping it at an iteration Tstop. Hence, for t > Tstop our
algorithm is a standard MH with an improved proposal PDF
w.r.t. the initial choice, thus providing a better performance
and guaranteeing convergence. However, the numerical re-
sults described in Section 6 show that the algorithm seems to
maintain the correct ergodicity properties, so we always use
Tstop = Ttot. A theoretical convergence proof is under de-
velopment and will be included in future works. Finally, we
note that degeneracy problems can appear during the first it-
erations in the update of the covariance matrices if we have a
poor initialization. In order to avoid this issue, we allow the
method to use a few iterations (t = 1, . . . , Ttrain) to collect
information about the target, assigning the produced state of
the chain to the closest Gaussian in the mixture, as in [11].

3. AGM-MH ALGORITHM

The proposed AGM-MH algorithm is described below. First
of all, notice that, during the first Ttrain time steps the algo-
rithm simply assigns the current state of the chain, xt, to a
Gaussian among the N in the mixture, according to the min-
imum Euclidean distance between xt and the means µ

(t−1)
i ,

i = 1, ..., N . Afterwards, the algorithm updates all the pa-
rameters in the mixture until t = Tstop, when adaptation is
stopped. In the description of the algorithm, the parameters
are updated using a block procedure, but efficient recursive
update formulas can be obtained, as shown in Section 4.

1. Initialization:

(a) Time instants: Set t = 0. Choose an initial state,
x0 ∈ D, and positive integers, Ttrain, Tstop and
Ttot, such that Ttrain < Tstop ≤ Ttot.

(b) Proposal: Choose the number of GaussiansN , as
well the initial settings for µ

(0)
1:N = [µ(0)

1 , ...,µ
(0)
N ]

and C(0)
1:N = [C(0)

1 , ...,C(0)
N ]. Set w(0) = 1

N 1N ,
where 1N is an N × 1 vector of ones.

(c) Auxiliary parameters: For i = 1, ..., N , define
S(0)

i = [s(1)
i = µ

(0)
i ], with mi = 1 denoting the

number of columns of S(0)
i . Let ε be a small con-

stant value and Id an identity matrix.

2. MH steps:

(a) Sample x′ from a mixture of Gaussian PDFs,

x′ ∼ qt(x|w(t),µ
(t)
1:N ,C

(t)
1:N ).

(b) Accept xt+1 = x′ with probability

α = min

"
1,
p(x′)q(xt|w(t),µ

(t)
1:N ,C

(t)
1:N )

p(xt)q(x′|w(t),µ
(t)
1:N ,C

(t)
1:N )

#
. (3)

Otherwise, set xt+1 = xt.

3. Update the parameters of the proposal (t < Tstop):

(a) Find the closest Gaussian to xt+1 (w.r.t. the Eu-
clidean distance), i.e., find the index

j = arg mini|µ
(t)
i − xt+1|2. (4)

(b) Set mj = mj + 1 and update (adding a new col-
umn) the j-th auxiliary matrix

S(t+1)
j = [S(t)

j , s(mj)
j = xt+1], (5)

whereas S(t+1)
i = S(t)

i , for all i 6= j.

(c) If t > Ttrain: update the parameters of the j-th
Gaussian,

µ
(t+1)
j =

1
mj

mj∑
i=1

s(i)
j , (6)

and

C
(t+1)
j =

S̃
(t+1)
j

[
S̃

(t+1)
j

]>
+ (mj − 1)εId

mj − 1
, (7)
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where S̃(t+1)
j = S(t+1)

j − µ
(t+1)
j ⊗ 1>mj

, with
⊗ denoting the Kronecker product [13]. Set
µ

(t+1)
i = µ

(t)
i and C(t+1)

i = C(t)
i , ∀i 6= j. Since

mj has been incremented, we also need to update
the weights,

w
(t+1)
i =

mi∑N
k=1mk

, i = 1, ..., N, (8)

so that w(t+1) = [w(t+1)
1 , ..., w

(t+1)
N ]T .

4. If t < Ttot, return to step 2 with t = t+ 1.

Observe that the proposal PDF is only updated for t > Ttrain.
Moreover, note that the matrices S(t)

i and S̃(t)
i have dimension

d×mi for any i ∈ {1, ..., N}, so that C(t)
i always has dimen-

sion d× d. The term εId is used to avoid numerical problems
(the matrix C(t)

i must be positive definite), as in [11].

4. EFFICIENT RECURSIVE UPDATE OF THE
PARAMETERS

To update the parameters of the selected (j-th) Gaussian PDF
in the mixture, we can use recursive expressions. Indeed, re-
calling that, in step 3b of the algorithm, mj = mj + 1 has
already been updated and s(mj)

j = xt+1, Eq. (6) becomes

µ
(t+1)
j =

1
mj

xt+1 +
mj − 1
mj

µ
(t)
j , (9)

and (7) can be rewritten as

C(t+1)
j =

mj − 2
mj − 1

C(t)
j (10)

+
1

mj − 1

[
(xt+1 − µ

(t+1)
j )(xt+1 − µ

(t+1)
j )T

mj
+ εId

]
.

Finally, note that

N∑
k=1

mk = t+ 1 +N,

so that
w

(t+1)
i =

mi

t+N + 1
, i = 1, ..., N. (11)

for t > Ttrain. In this way, the novel technique becomes com-
putationally efficient even for high dimensional problems.

5. AGM-MH AS BLACK-BOX METHOD

The AGM-MH method shows sensitive dependence on the
initial conditions. If some prior information about the target is
available, it can be used to choose the initial parameters. If no
prior informations is available, the AGM-MH can be applied
as black-box algorithm in the following way:

• Use a large number of Gaussians, N (typically N must
increase as the dimension, d, increases).

• Select randomly the means µ
(0)
1:N in order to cover as

much as possible of the the target’s domain, D ⊆ Rd.

• Choose diagonal covariance matrices, C(0)
i = σ2

i Id

(i = 1, . . . , N ), with a large value of σ2
i in order to be

able to explore the domain of interest, D ⊆ Rd, during
the training period, t ≤ Ttrain.

• The parameter Ttrain should increase as the problem’s
dimensions, d, increases. Numerical results suggest
that Ttrain = 100d can be a suitable choice, although
for very complicated target distributions a higher value
of Ttrain may be needed.

Finally, we remark that the use of a huge number of Gaussians
does not involve computational problems, since the weights
of the irrelevant Gaussians quickly tend to zero. Hence, the
computational cost is controlled by the adaptation, so that
only the Gaussians located close to high probability regions
survive. The useless Gaussian PDFs, located far away from
the modes of the target, are virtually discarded.

6. SIMULATIONS

6.1. Example 1

In this toy example, we apply the AGM-MH method to draw
samples from a univariate bimodal target PDF defined as

po(x) ∝ p(x) = exp
(
− (x2 − 4)2

4

)
= exp

(
−x

4 − 4x2 + 16
4

)
,

(12)

which has two modes at x = ±2. We set the number of
Gaussians in the proposal PDF to N = 2, with w(0)

i = 0.5
and σ2

i = 10 for i = 1, 2. The two initial means are chosen
randomly with uniform distributions in [−4, 0] and [0, 4] re-
spectively, i.e., µ(0)

1 ∼ U([−4, 0]) and µ(0)
2 ∼ U([0, 4]). We

perform Ttot = 5000 iterations of the chain, setting Ttrain =
200 and Tstop = Ttot (i.e., the adaptation is never stopped).
The initial state is randomly chosen as x0 ∼ N (x|0, 1). We
use all the generated samples to estimate the mean of the tar-
get (which is equal to zero, since p(x) is symmetric). The
mean square error (MSE) of the estimation (averaged over
2000 runs) is 15 · 10−4, whereas the estimated linear cor-
relation between contiguous samples is 0.18. Without us-
ing any adaptation (i.e., using a standard MH) the correlation
is ≈ 0.78. Hence, we can observe that the correlation de-
creases using the AGM-MH algorithm. The final averaged lo-
cations of the means of the two Gaussians in the proposal are
µ

(Ttot)
1 ≈ −1.88 and µ(Ttot)

2 ≈ 1.88, with weights w(Ttot)
i ≈

0.5 and variances σ2
i ≈ 0.16 for i = 1, 2.
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Fig. 1. (a) Averaged values of α as a function of the iteration index, t, for M = 2, 3, 6 in Example 2. For t > Ttrain,
α increases as the proposal becomes closer to the target. (b) Initial configuration of the means (squares) and the covariance
matrices (ellipses) in Example 3. (c) Final configuration (red) and drawn samples (blue), at t = Ttot = 7000, for Example 3.

6.2. Example 2

For the sake of simplicity, we consider again a univariate tar-
get density. However, now we consider that the target distri-
bution is itself a mixture of Gaussian PDFs. Specifically, the
target PDF is formed by M Gaussians, i.e.,

po(x) ∝ p(x) =
M∑
i=1

aiN (x|ηi, ρ
2
i ), (13)

where the weights are ai = 1/M and the variances ρ2
i = 4

for i = 1, ...,M . We consider three different cases with M ∈
{2, 3, 6}. The means are, for each case:

• M = 2: η1 = −10 and η2 = 10.

• M = 3: η1 = −10, η2 = 0 and η3 = 10.

• M = 6: η1 = −15, η2 = −10, η3 = −5, η4 = 5,
η5 = 10 and η6 = 15.

In the proposal we also use N = M Gaussians, with the
initial means chosen uniformly in [−20, 20], the initial vari-
ances set to σ2

i = 10 and the weights to w(0)
i = 1/N for all

i = 1, ..., N . As in the first example, we perform Ttot = 5000
iterations of the chain, setting Ttrain = 200 and Tstop = Ttot

(i.e., the adaptation is never stopped), and the initial state of
the chain is randomly chosen as x0 ∼ N (x|0, 1). We use all
the generated samples to estimate the normalizing constant of
the target. The mean square errors (MSE) of the estimations
(averaged over 1000 runs) are 1.6·10−4, 1.1·10−4 and 2·10−5

for M = 2, 3, 6 respectively. The resulting correlations are
0.13, 0.14 and 0.16 for M = 2, 3, 6. In comparison, with
a standard MH (i.e., without adaptation) the correlations are
0.81, 0.72 and 0.46 for M = 2, 3, 6. Thus, we remark again
that the adaptation provided by the AGM-MH algorithm re-
duces considerably the correlation among the generated sam-
ples. Finally, Figure 1(a) depicts the averaged value of the
acceptance function, α in (3), as a function of t for different

values of M . Note that, for t > Ttrain, the averaged values
of α increase as the proposal becomes closer to the target.

6.3. Example 3

In this example, our goal is drawing samples from a bivari-
ate target PDF using the AGM-MH algorithm as a black-
box technique. Just for simplicity, we also consider a bivari-
ate mixture of M = 2 Gaussians as target distribution, with
weights a1 = a2 = 0.5, means η1 = [−2,−2]> and η2 =
[0, 4]>, and covariance matrices Σ1 = [0.3, 0.1; 0.1, 0.3] and
Σ2 = [0.8, −0.3;−0.3, 0.8]. We set Ttot = 7000, Ttrain =
200 and Tstop = Ttot (i.e., the adaptation is never stopped).
On the one hand, we use for the proposal N = 2 Gaussian
PDFs with w(0)

i = 0.5 and C(0)
i = 10Id for i = 1, 2. The

means are selected uniformly, µ1 ∼ U([−5, 5] × [0, 5]) and
µ2 ∼ U([−5, 5] × [−5, 0]). In this case, all the parameters
of the mixture in the proposal always converge to the cor-
responding values of the mixture in the target PDF. On the
other hand, we also consider the case with N = 10. We set
w

(0)
i = 0.1, C(0)

i = 10Id and µi ∼ U([−5, 5] × [−5, 5])
for i = 1, . . . , 10. In this situation, the AGM-MH algorithm
improves the initial proposal PDF, updating the parameters of
the Gaussians placed in good locations, whereas the weights
of the unhelpful Gaussians decrease quickly to zero and their
parameters remain invariant, as shown in Fig. 1.

7. DISCUSSION

We have proposed a novel adaptive independent MH algo-
rithm (AGM-MH) to draw samples from arbitrary multimodal
and multidimensional targets. AGM-MH builds on the work
of [11], extending it by using a Gaussian mixture proposal
and updating also the means and the weights of the Gaus-
sians. Compared to a previous extension provided by [12],
our approach is more efficient, updating the proposal at every
iteration instead of only at a fixed number of iterations.
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