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ABSTRACT
Estimating the autoregressive parameters from noisy observations
has been addressed by various authors for the last decades. Although
several on-line or off-line approaches have been proposed when the
additive noise is white, few papers deal with the additive moving av-
erage noise. In this paper, we suggest estimating the model param-
eters by using the prediction error method. Despite its high compu-
tational cost, the method has the advantage of being efficient in the
Gaussian case. A comparative study with existing methods is then
carried out and points out the efficiency of our approach especially
when the number of samples is small.

Index Terms— Autoregressive processes, prediction error
method, moving average noise, estimation.

1. INTRODUCTION

A great deal of interest has been paid to autoregressive (AR) models.
Indeed, this model is one of the simplest and is defined by a finite
set of parameters, namely the AR parameters. It has been used in
a wide range of signal processing issues, from spectral analysis to
signal analysis [1]. It is very popular in various applications such as
speech processing (for coding, enhancement, etc.), radar processing
(for clutter modeling, etc.), digital communications (for channel es-
timation, etc.), statistics, econometrics and forecasting. Its variants
such as the multichannel AR process (M-AR) or the time-varying
AR process (TVAR) are also often used respectively when there are
several sensors and when a non-stationary signal must be processed.

Many ways to estimate the model parameters have been pro-
posed and the most known are the least squares methods. They can
be either off-line and based on the Yule–Walker (YW) equations or
on-line and based on adaptive filters such as the LMS. However,
when the observations are disturbed by an additive noise, the AR
parameter estimates are biased. More particularly, when the noise is
white, several authors have focused their attention on the way to take
into account the influence of the noise and get rid of it. If the addi-
tive noise variance is known, the noise-compensated approach can
be used. It consists in subtracting the noise-variance to the diagonal
of the noisy-observation correlation matrix in the YW equations [2].
Otherwise, instrumental variable techniques, among which the most
known method is the modified Yule–Walker equations, can be con-
sidered [1, 3]. As an alternative, an “off-line” bias correction scheme
and some variants have been proposed by Zheng [4, 5]. Davila [6]
suggests mapping this estimation issue into a quadratic eigenvalue

problem. The errors-in-variables (EIV) approach [7, 8] consists in
jointly estimating the AR parameters, the variance of the additive
noise and the variance of the driving process. Concerning “on-line”
methods, the ρ-LMS [9] or the γ-LMS [10] can be used. Otherwise,
providing that the noise variances are known, the AR process and
their parameters can be jointly estimated. This non-linear estimation
issue can be addressed by using Kalman (or H∞) algorithm such as
the Extended Kalman (or EH∞) filter [11], the Second-Order EKF
(SOE H∞) [12], the Sigma-Point H∞ filter [13], etc. or by using
coupled filters.

For the last years, extensions of most of the above methods have
been proposed to estimate the M-AR matrices of M-AR processes
disturbed by additive white noises. For instance, YW equations are
considered in [14] whereas EIV is studied in [15]. In [16], an ex-
tension of Zheng’s method to the multichannel case has been pro-
posed. In [17], the authors suggest solving two set of equations that
must be satisfied by the coefficients of the AR matrices and the noise
variances. The first one is the noise-compensated Yule-Walker equa-
tions. In the second one, the noise variances are expressed from the
coefficients of the AR matrices and the autocorrelation of the ob-
servations filtered by the inverse filter. The noise variances hence
satisfy a set of non-linear equations that can be solved by means of
a Newton-Raphson algorithm. Their estimations are then used in the
noise-compensated Yule-Walker equations to deduce the AR matrix
parameters. Similarly, the estimations of the TVAR parameters have
been studied in [18].

In this paper, we focus our attention on the estimation of the
AR parameters when the AR process is disturbed by a colored noise.
Unlike the additive white noise case, few papers deal with this issue.
To our knowledge, this problem has been investigated by looking
at two cases: when the additive noise is a moving average (MA)
process [19, 20] or when it is a first-order AR process [21]. Note
that the first resulting algorithms are based on [4] while the second
algorithm is based on [6]. Our contribution is twofold:
1) We propose a new method to estimate the AR parameters when
the AR process is disturbed by a MA process. It is based on the
prediction error method (PEM), which is known to be asymptotically
unbiased and efficient in the Gaussian case [22, 23].
2) We compare our approach with [20].

The remainder of this paper is organized as follows. Section 2
defines the identification problem. Section 3 recalls the main con-
cepts of the prediction error method and describes how the PEM can
be applied to the case of AR models corrupted by MA processes. In
Section 4, a comparative study between our approach and that intro-
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duced in [20] is carried out by means of Monte Carlo simulations.

2. PROBLEM STATEMENT

Let us assume that the signal is modeled by an autoregressive process
as follows:

s(k) + a1 s(k − 1) + · · ·+ ap s(k − p) = u(k) (1)

where{ai}i=1,...,p are the AR parameters and u(k) is a zero-mean
white noise process with variance σ2

u. The noise–free AR signal
s(k) is affected by the additive noise b(k) so that the available ob-
servation is given by

y(k) = s(k) + b(k). (2)

We assume that b(k) is a q–th order MA process defined as follows:

b(k) = w(k) + c1 w(k − 1) + · · ·+ cq w(k − q) (3)

where {ci}i=1,...,q are the MA parameters and w(k) is a zero-mean
white process with variance σ2

w, uncorrelated with u(k). By intro-
ducing the polynomials

A(z−1) = 1 + a1 z
−1 + · · ·+ ap z

−p (4)

C(z−1) = 1 + c1 z
−1 + · · ·+ cq z

−q (5)

where z−1 is the unit delay operator, relations (1) and (3) can be
rewritten as

A(z−1) s(k) = u(k) (6)

b(k) = C(z−1)w(k). (7)

Inserting (6) and (7) in (2) leads to

y(k) =
u(k)

A(z−1)
+ C(z−1)w(k), (8)

which is an alternative representations of the noise-corrupted AR
process.

The problem to be solved consists in estimating the AR param-
eters {ai}i=1,...,p and the driving noise variance σ2

u given the set of
noisy observations {y(k)}k=1,...,N . The orders p and q are assumed
as a priori known.

3. A PREDICTION ERROR METHOD FOR ESTIMATING
AR MODELS DISTURBED BY MA PROCESSES

Consider a single-output linear system described by the following
state space representation

x(k + 1) = A(ϑ)x(k) +G(ϑ) e1(k) (9)

y(k) = C(ϑ)x(k) + e2(k) (10)

where e1(k) and e2(k) are mutually uncorrelated white processes
with covariances

E
[
e1(k) e

T
1 (k)

]
, Q(ϑ) (11)

E
[
e
2
2(k)

]
, r(ϑ) (12)

and ϑ is a vector of unknown parameters that completely character-
ize the model. By considering the Kalman predictor associated with
model (9)–(10), it is possible to obtain the so-called innovation form
[22, 23]:

x̂(k + 1|k, ϑ) = A(ϑ) x̂(k|k − 1, ϑ) +K(ϑ) ε(k, ϑ) (13)

y(k) = C(ϑ) x̂(k|k − 1, ϑ) + ε(k, ϑ) (14)

where (omitting the argument ϑ for simplicity)

K = AP C
T
(

C P C
T + r

)−1

, (15)

and P is the solution of the algebraic Riccati equation

P = AP A
T +GQG

T − AP C
T
(

C P C
T + r

)−1

C P A
T
.

(16)
ε(k, ϑ) is the innovation, i.e. the one step-ahead prediction error of
y(k):

ε(k, ϑ) = y(k)−ŷ(k|k−1, ϑ) = y(k)−C(ϑ) x̂(k|k−1, ϑ). (17)

The prediction error method consists in estimating ϑ by minimizing
the cost function

VN(ϑ) =
1

N

N∑

k=1

ε
2(k, ϑ), (18)

where N is the number of available data [22]–[25]. The PEM pa-
rameter estimates are consistent and asymptotically Gaussian dis-
tributed under weak conditions. Moreover, if e1(k) and e2(k) are
Gaussian processes, the obtained estimation is also asymptotically
efficient [22, 23].

To obtain a state space representation of the model (8), let us
define the following stochastic processes

ξj(k) =

q+1−j
∑

i=1

ci+j−1 w(k − i), j = 1, . . . , q. (19)

From (2) and (3) it follows that

y(k) = s(k)+w(k)+

q∑

i=1

ci w(k−i) = s(k)+w(k)+ξ1(k). (20)

By considering the state vector

x(k) =
[
s(k) · · · s(k − p+ 1) ξ1(k) · · · ξq(k)

]T
(21)

it is possible to define a state space model of type (9)–(10) where

A(ϑ) =


















−a1 · · · · · · −ap

1 0 · · · 0

0
. . . 0

...
0 1 0

0p×q

0p×q

0 1 0

0
. . .

. . . 0
...

. . . 1
0 · · · · · · 0


















(22)

G(ϑ) =

[
1 0 · · · 0 0 · · · · · · 0
0 · · · · · · 0 c1 c2 · · · cq

]T

(23)

C =
[
1 0 · · · 0
︸ ︷︷ ︸

p−1

1 0 · · · 0
︸ ︷︷ ︸

q−1

]
(24)

e1(k) =
[
u(k) w(k − 1)

]T
e2(k) = w(k) (25)

Q(ϑ) =

[
σ2
u 0
0 σ2

w

]

r(ϑ) = σ
2
w (26)

and the parameter vector characterizing the model is

ϑ =
[
a1 a2 · · · ap c1 · · · cq σ

2
u σ

2
w

]T
. (27)
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Table 1. Example 1: true and estimated values of AR parameters and driving noise variance and NRMSE for PEM and YWILS. Monte Carlo
simulation of M = 300 runs have been performed with N = 250, 500, 1000.

a1 a2 a3 σ
2

u
NRMSE

true −1.9363 1.7233 −0.7050 1 −

PEM (N = 1000) −2.0067 ± 0.0448 1.8147 ± 0.0662 −0.7485 ± 0.0338 0.8071 ± 0.5265 0.0561

YWILS (N = 1000) −2.0015 ± 0.3767 1.8583 ± 0.9124 −0.8062 ± 0.6660 0.6267 ± 2.1220 0.4476

PEM (N = 500) −2.0574 ± 0.0345 1.9114 ± 0.0536 −0.7961 ± 0.0304 0.7556 ± 0.5102 0.0937

YWILS (N = 500) −2.0894 ± 0.3668 2.1497 ± 0.9995 −1.1463 ± 1.1951 −0.1504 ± 2.9206 0.6397

PEM (N = 250) −2.0298 ± 0.3961 1.8518 ± 0.5297 −0.7325 ± 0.2418 0.9492 ± 0.5901 0.2685

YWILS (N = 250) −2.0599 ± 0.5966 1.9574 ± 1.2001 −1.0853 ± 1.0796 −0.0374 ± 7.3903 0.6624

The identification problem under investigation can thus be solved by
finding the parameter vector which minimizes (18)

ϑ̂N = argmin
ϑ

VN (ϑ). (28)

It should be noted that, by using the spectral factorization the-
orem [23], model (8) can be represented by means of the ARMA
process

y(t) =
F (z−1)

A(z−1)
ε(t), (29)

where the stable polynomial F (z−1) of degree p+q and the variance
σ2
ε of the white process ε(t) can be obtained from the relation

σ
2
ε F (z−1)F (z) = σ

2
u + σ

2
w A(z−1)A(z)C(z−1)C(z). (30)

It is thus possible to apply PEM by considering the standard ARMA
model (29). Nevertheless, since the number of parameters to be iden-
tified is 2p + q + 1 instead of p + q + 2, an approach of this kind
presents the following drawbacks:

– the computational load increases;

– the estimation accuracy decreases (the coefficients of A(z−1)
and F (z−1) are treated as independent parameters) [26].

Remark: given the state space representation of the system in-
troduced above, an alternative would consist in explicitly estimating
both the AR process, the MA parameters and the AR parameters
from the noisy observations. In that case, one basic solution would
consist in storing p consecutive samples of the AR process, the q
variables introduced in equ. (19), the p AR parameters {ai}i=1,...,p

and the q MA parameters {cj}j=1,...,q . This would lead to a state
space representation of the system where the extended state vector
would be updated by using a non-linear function of both the model
noise and the extended vector at the previous instant. Therefore,
a general extended Kalman filtering would be necessary. Neverthe-
less, the noise variance would remain undefined as well as the model
noise covariance matrix. In addition, the direct estimation of the MA
parameters would be difficult. For this reason, we have focused our
attention on an alternative identification approach based on the PEM.
Another approach would consist in approximating the MA process
by a high-order AR process. Once again, a non-linear Kalman based-
approach could be considered, but the estimation of the driving pro-
cess covariance matrix has to be addressed. Note that, many authors
have focused their attention on the MA parameter estimation such as
Stoica and Broersen [27]–[29].

4. SIMULATION RESULTS

In this section, the performance of the proposed PEM approach is
tested by means of Monte Carlo simulations and compared with that
of the method described in [20], that will be denoted as YWILS. It
should be noted that the YWILS method relies on a iterative bias–
compensated least squares algorithm where, at each step, an estima-
tion of the autocovariances of the MA process is used to compensate
the bias in the least squares estimation of the AR parameters. The
simulations will be performed on data generated by two different
noisy AR models already considered in [20].

In the first example, we consider a third–order AR model de-
scribed by the coefficients

a1 = −1.9363, a2 = 1.7233, a3 = −0.7050,

corresponding to the poles p1,2 = 0.89 e±j(0.3π), p3 = 0.89. The
driving process u(k) is a Gaussian white noise with variance σ2

u=1.
The additive noise b(k) is a second–order MA process characterized
by the coefficients

c1 = −1, c2 = 0.2

and w(t) is a Gaussian white process with variance σ2
w = 2.175,

corresponding to a SNR of about 5 dB. Monte Carlo simulations of
M = 300 independent runs have been carried out by considering
different numbers of data, namely N = 250, 500, 1000. The pa-
rameters m and δ characterizing the YWILS algorithm (see [20])
have been set to m = 5 and δ = 0.001. The obtained results are
summarized in Table 1, which reports the true and estimated values
of AR coefficients and driving noise variance, the mean of their es-
timates, the associated standard deviation and the normalized root
mean square error defined as

NRMSE =
1

‖θ‖

√
√
√
√ 1

M

M∑

i=1

‖θ̂i − θ‖2, (31)

where θ̂i denotes the estimate of θ , [ a1 a2 · · · ap]
T obtained in

the i–th trial of the Monte Carlo simulation and M denotes the num-
ber of Monte Carlo runs. Figures 1 and 2 report the true and esti-
mated poles for the case N = 500.

In the second example, we consider a fourth–order AR model
described by the coefficients

a1 = −2.4863, a2 = 3.0909, a3 = −1.9694, a4 = 0.6274,

leading to the poles p1,2 = 0.89 e±j(0.3π) and p3,4 = 0.89 e±j(0.2π).
The driving process u(k) is a Gaussian white noise with variance
σ2
u = 1. The additive noise b(k) is the same MA process consid-

ered in the first example and w(k) is a Gaussian white process with
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Table 2. Example 2: true and estimated values of AR parameters and driving noise variance and NRMSE for PEM and YWILS. Monte Carlo
simulation of M = 300 runs have been performed with N = 250, 500, 1000.

a1 a2 a3 a4 σ
2

u
NRMSE

true −2.4863 3.0909 −1.9694 0.6274 1 −

PEM (N = 1000) −2.5122 ± 0.0321 3.1486 ± 0.0704 −2.0202 ± 0.0645 0.6508 ± 0.0238 1.2261 ± 0.3978 0.0298

YWILS (N = 1000) −2.1860 ± 0.5386 2.5289 ± 0.9953 −1.5048 ± 0.8186 0.4934 ± 0.2555 4.2010 ± 8.9856 0.3639

PEM (N = 500) −2.5650 ± 0.0270 3.2787 ± 0.0604 −2.1403 ± 0.0563 0.6950 ± 0.0218 1.1580 ± 0.3950 0.0645

YWILS (N = 500) −2.4120 ± 0.6311 3.0416 ± 1.5004 −1.9769 ± 1.4739 0.6699 ± 0.6230 3.5105 ± 10.0348 0.5099

PEM (N = 250) −2.6632 ± 0.1801 3.4617 ± 0.3506 −2.2807 ± 0.3041 0.7333 ± 0.0900 1.0009 ± 0.4433 0.1631

YWILS (N = 250) −2.2820 ± 0.9300 2.8053 ± 2.0684 −1.7789 ± 1.9534 0.6133 ± 0.7719 7.4344 ± 13.0745 0.6957

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 1. True poles: Example 1, N = 500.
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1

1.5

YWILS

Fig. 2. Estimated poles for PEM and YWILS: Example 1, N = 500.
Some poles estimated with YWILS fall outside the figure area.

variance σ2
w = 0.7834, leading to a SNR of about 15 dB. Monte

Carlo simulations of M = 300 independent runs have been carried
out by considering N = 250, 500, 1000. The parameters m and δ
in the YWILS algorithm have been set as in the first example. The
obtained results are summarized in Table 2. Figures 3 and 4 report
the true and estimated poles for the case N = 500.

For both models, the YWILS algorithm does not converge in
some Monte Carlo runs. In these cases, the simulation has been
stopped after 200 iterations. It can be observed that the performance
of PEM is significantly better than that of YWILS. Moreover, the
YWILS algorithm can be affected by convergence problems. The
PEM approach does not suffer from convergence problems, but the
algorithm can converge to a local minimum. To overcome this prob-
lem, it is possible to start the iterative minimization procedure at
different initial estimates and to compare the obtained results. As

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 3. True poles: Example 2, N = 500.
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Fig. 4. Estimated poles for PEM and YWILS: Example 2, N = 500.
Some poles estimated with YWILS fall outside the figure area.

the computational load of PEM is quite high with respect to that of
YWILS, the YWILS algorithm is preferable when the number of
data is high. In fact, in this case the YWILS performance is good
and there are no convergence problems, see [20] where N = 4000
has been considered.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed an alternative approach to estimate
the AR parameters from observations disturbed by an additive MA
process. Our approach has the advantage of outperforming the ex-
isting method proposed by Mahmoudi et al. [20], especially when
the number of samples is small (< 1000). We are currently investi-
gating other solutions based on on-line EM based method or on the
approximation of the MA part of model by a high-order AR model.
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