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ABSTRACT
Frequency estimation of a complex sinusoidal signal is a fun-
damental problem in signal processing. In this regard, Abou-
tanios and Mulgrew (A&M) proposed an iterative frequency
estimator which can approach the theoretical bound in two it-
erations, thus, made it one of the best iterative estimators. In
this paper, we theoretically analyze the two versions of the
A&M estimator and show that the estimation biases of the
two versions are not equivalent. The results of the theoreti-
cal analysis indicate that the bias of the first iteration can be
accurately predicted by a polynomial equation. We then pro-
pose to use the roots of the polynomial equation to improve
the estimation and reduce the bias. Experiments show that the
proposed new estimator can significantly reduce the bias.

Index Terms— Frequency estimation, complex sinusoid,
estimation bias, bias reduction.

1. INTRODUCTION

Frequency estimation of a single-tone complex sinusoidal sig-
nal is a fundamental problem in digital signal processing and
has applications in areas such as radar signal processing and
communication. The signal can be described as:

s[n] = A0e
j(2π

f0
fs
n+θ0) + w[n], n = 0, 1, . . . , N − 1 (1)

where A0, f0, and θ0 are the amplitude, frequency, and phase
of the signal, respectively, the term w[n] is an additive noise,
fs is the sampling frequency, andN is the number of samples.

When the noisew[n] is a zero-mean white Gaussian noise,
Rife et al. [1] showed that the maximum likelihood (ML) fre-
quency estimation is the frequency that maximizes the mag-
nitude of the periodogram of s[n]:

f̂0,ML = argmax
f

{∣∣∣∣∣
N−1∑
n=0

s[n]e−j2πnf

∣∣∣∣∣
}

(2)

They also showed that the Cramér Rao lower bound (CRLB)
of the mean squared error for the frequency estimation is
6f2s /(4π

2N(N2 − 1)ρ) with ρ being the SNR of s[n].
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The search for the frequency is usually divided into two
steps: a coarse search and a fine search. The coarse search is
to find an initial estimation from the peak magnitude of the
discrete Fourier transform (DFT) of s[n]:

S[k] =

N−1∑
n=0

s[n]e−j
2π
N nk (3)

Let kp be the index of the peak magnitude in (3). The fine
search is to find a frequency offset δ̂ around the initial esti-
mation with the constraint |δ̂| < 1/2. The final estimated
frequency is then:

f̂0 = (kp + δ̂)
fs
N

(4)

The methods for fine search can be divided into two cat-
egories: direct approaches and iterative approaches. For the
direct approaches, δ̂ is directly calculated from three or more
spectrum lines [2–5]. On the contrary, iterative approaches
repeatedly refine the solution either through dichotomous
search [4, 6–8] or numerical method [1, 9–15].

Among the iterative estimators, the one proposed by
Aboutanios and Mulgrew [11] can approach CRLB asymp-
totically in two iterations. This feature makes it one of the
best iterative estimators. Since this estimator will be the focus
of this paper, we will call it “A&M” estimator from now on.
Based on the A&M estimator, several improvements have
been proposed. Djurovic et. al. [12, 13] applied marginal
median DFT and L-DFT for non-Gaussian noise. Minhas et.
al. [14] replaced the original estimation equation to reduce
computation cost. Liu et. al. [15] shifted the starting point in
the first iteration to non-integer location to further improve
its performance.

There are two versions of the A&M estimator and their
performance under the influence of noise are proved to be
equivalent. However, a very important aspect of the estima-
tor has not yet been studied, i.e., its estimation bias. The bias
is an important limiting factor for the performance of an es-
timator because it becomes the major source of error as the
level of noise becomes small. In this paper, we theoretically
analyze the estimation biases of the two versions of the A&M
estimator and show that the biases of the two versions are
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Table 1. Aboutanios and Mulgrew Algorithm
S = FFT (s)
kp = argmax

k
{|S[k]|}

δ̂0 = 0
for i = 1 to Q do

Xp =
∑N−1
n=0 s[n] exp(−j2πn(kp+ δ̂i−1+p)/N), p =

±0.5

h(δ̂i−1) =

 1
2Re

{
X0.5+X−0.5

X0.5−X−0.5

}
, for version 1

1
2
|X0.5|−|X−0.5|
|X0.5|+|X−0.5| , for version 2

δ̂i = δ̂i−1 + h(δ̂i−1)
end for
f̂0 = (kp + δ̂Q)

fs
N

not equivalent. Using the results of the theoretical analysis,
we then propose a new estimator to significantly reduce the
bias, thereby, extending the SNR range that the estimator ap-
proaches CRLB.

2. THEORETICAL ANALYSIS OF THE
ESTIMATION BIAS

The original A&M algorithm is listed in Table 1. For the first
iteration, the estimated frequency offsets of AM estimator are
as follows:

δ̂a1 =
1

2
Re

{
S[kp +

1
2 ] + S[kp − 1

2 ]

S[kp +
1
2 ]− S[kp −

1
2 ]

}
(5)

δ̂b1 =
1

2

∣∣S[kp + 1
2 ]
∣∣+ ∣∣S[kp − 1

2 ]
∣∣∣∣S[kp + 1

2 ]
∣∣− ∣∣S[kp − 1

2 ]
∣∣ (6)

where δ̂a1 and δ̂b1 are for the first and second version of the
estimator respectively.

What we want to do is to theoretically analyze the above
two equations. The first step is to derive the analytical expres-
sion for the two spectrum lines: S[kp−1/2] and S[kp+1/2].
Since we will focus our discussion on the bias behavior, the
noise w[n] is set to zero. Plugging (1) and (4) into (3), we get:

S[kp + kd] = A0e
jθ0

N−1∑
n=0

e−j2π(
kd−δ
N )n (7)

This equation is the sum of a geometric series and the two
spectrum lines can be expressed as:

S[kp −
1

2
] = A0e

jθ0ej
(N−1)π(δ+1

2
)

N
sin(π(δ + 1

2 ))

sin(
π(δ+ 1

2 )

N )
(8)

S[kp +
1

2
] = A0e

jθ0ej
(N−1)π(δ− 1

2
)

N
sin(π(δ − 1

2 ))

sin(
π(δ− 1

2 )

N )
(9)

Plugging (8) and (9) into the equations (5) and (6), the
analytical expressions for the first estimator can be expressed
as follows:

δ̂a1 =
1

2
Re

{
e
jπ
2N sin

(
π
N (δ + 1

2 )
)
+ e

−jπ
2N sin

(
π
N (δ − 1

2 )
)

e
jπ
2N sin

(
π
N (δ + 1

2 )
)
− e−jπ

2N sin
(
π
N (δ − 1

2 )
)}
(10)

Let s1 = sin(π(δ + 1/2)/N) and s2 = sin(π(δ − 1/2)/N).

δ̂a1 =
1

2
Re

{
cos( π

2N )(s1 + s2) + j sin( π
2N )(s1 − s2)

cos( π
2N )(s1 − s2) + j sin( π

2N )(s1 + s2)

}
=

1

2

s21 − s22
s21 + s22 − 2s1s2 cos(

π
N )

(11)

The analytical expressions for the second estimator is:

δ̂b1 =
1

2

|s1|+ |s2|
|s1| − |s2|

(12)

Plugging sinusoidal Taylor series into (11) and (12) and
neglecting the terms with order higher than 1/N4, we get the
following equation for the first estimator:

δ̂a1 ≈
1

2

2π2

N2 δ − π4

3N4 (δ + 4δ3)

g1 − g2 − g3
(13)

where

g1 =
π2

2N2
(1 + 4δ2) (14)

g2 =
π4

24N4
(1 + 24δ2 + 16δ4) (15)

g3 =
π2

2N2
(−1 + 4δ2) +

π4

24N4
(7− 24δ2 − 16δ4) (16)

It can then be further simplified to:

δ̂a1 ≈
1

2

2π2

N2 δ − π4

3N4 (δ + 4δ3)
π2

N2 − π4

3N4

≈ δ + π2

6N2
(δ − 4δ3) (17)

For the second estimator, we get:

δ̂b1 ≈
1

2

2πδ
N −

π3

3N3 (
3
4δ + δ3)

π
N −

π3

3N3 (
1
8 + 3

4δ
2)

= δ − π2

12N2
(δ − 4δ3) (18)

From the above analysis, we can see that the two versions
of the estimator are not equivalent in terms of estimation bias
because the bias of the second version, π2(δ− 4δ3)/(12N2),
is half of the bias of the first version.
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Applying the same analysis, the distance for the second
iteration can be expressed as follows:

h(δ̂a1 ) ≈ −
π2

6N2
(δ − 4δ3)− π4

36N4
(δ − 4δ3) (19)

h(δ̂b1) ≈
π2

12N2
(δ − 4δ3)− π4

144N4
(δ − 4δ3) (20)

and the estimation for the second iteration is:

δ̂a2 ≈ δ −
π4

36N4
(δ − 4δ3) (21)

δ̂b2 ≈ δ −
π4

144N4
(δ − 4δ3) (22)

From the above two equations, we can conclude that the bias
of the second version is a quarter of the first version at the
second iteration. A second conclusion can be deduced from
the above analysis is that the bias is proportional to 1/N2i at
the i-th iteration for both versions. To put it more exactly, in
each iteration, the bias is reduced by 6N2 and 12N2 for the
first and second version respectively.

3. PROPOSED METHOD

Equations (17) and (18) express the relationship between the
estimated offset δ̂ and the exact offset δ in polynomial form.
Therefore, a more accurate estimate can be obtained by solv-
ing these two polynomial equations with δ̂ as the input. Using
this new estimate as the input of the second iteration, we can
reduce the bias and make the estimation more accurate.

For this purpose, (17) can be rewritten as:

− 2π2

3N2
(δ̂ap)

3 +

(
1 +

π2

6N2

)
δ̂ap − δ̂a1 = 0 (23)

and (18) can be rewritten as:

π2

3N2
(δ̂bp)

3 +

(
1− π2

12N2

)
δ̂bp − δ̂b1 = 0 (24)

We replace δ in (17) and (18) with δ̂ap and δ̂bp because the roots
of the polynomials are now used as a new estimation of δ.

To be a valid solution, the root must be both real and in
the range between -0.5 and 0.5. For the two polynomials, both
have only one root that satisfies these conditions. We find that
the solution for (23) of version 1 estimator is:

δ̂ap =
(1− j

√
3)(1 + π2

6N2 )

2
2
3D

1
3
a

− (1 + j
√
3)D

1
3
a

2
1
3
4π2

N2

(25)

where Da is

Da =
12π4δ̂a1
N4

+

√
144π8(δ̂a1 )

2

N8
− 32π6

N6
(1 +

π2

6N2
)3 (26)

The solution for (24) of version 2 estimator is:

δ̂bp =
D

1
3

b

2
1
3
π2

N2

−
2

1
3 (1− π2

12N2 )

D
1
3

b

(27)

where Db is

Db =
3π4δ̂b1
N4

+

√
9π8(δ̂b1)

2

N8
+

4π6

N6
(1− π2

12N2
)3 (28)

In summary, the first iteration of our proposed estimation
algorithm can be accomplished in two steps. The first step is
to obtain an initial estimation from (5) or (6). Then, plugging
the initial estimation to (25) or (27) yields the second estima-
tion of the first iteration. The second estimation is then used
as the input for the second iteration.

4. EXPERIMENTAL RESULTS

All the experiments are conducted with kp = 2, and fs = 1.
Fig. 1 and Fig. 2 show the behavior of the estimation bias for
N = 8. The estimation bias is calculated as (δ − δ̂) where δ
is the true frequency offset and δ̂ is the estimated frequency
offset. For Fig. 1, δ varies from -0.49 to 0.49 with step size
0.01. Since the bias is symmetric, the figures only show the
part for positive δ.

In terms of the accuracy of theoretical prediction, Fig.
1(a) shows the true biases and the predicted biases in (17)
and (18). We can see that the prediction is very accurate.
To quantify the accuracy of the prediction, we calculate
|biaspredicted − biastrue|/|δ|. The maximum percentage is
0.047% for version 1 and 0.0068% for version 2.

In terms of improvements from the proposed method,
both Fig. 1 and Fig. 2 show that the estimation from the pro-
posed method is much more accurate than the A&M method
in both the first and the second iterations. In Fig. 1 , the max-
imum distance between the proposed method and the A&M
method is 101.9519 for version 1 and 102.5829 for version 2 in
both iterations. The minimum distance is 101.7568 for version
1 and 101.7711 for version 2 in both iterations. Fig. 2 shows
how the estimation bias varies with N at δ = 0.25. We
can see that as N gets larger, the gap between the proposed
method and the A&M method also gets larger. At N = 8 and
in the second iteration, the distance between the proposed
method and the A&M method is 101.7971 for version 1 and
102.1911 for version 2. At N = 256, the distance becomes
104.7839 for version 1 and 105.1818 for version 2 in the sec-
ond iteration. In summary, the proposed method does indeed
provide significant reduction on estimation bias as compared
to the A&M method.

Fig. 3 shows the performance under noise. White Gaus-
sian noise is added to the complex sinusoidal signal with δ =
0.1 and 0.4. The error of the estimated frequency is calcu-
lated as (f0 − f̂0) where f̂0 is calculated as in (4) and f0 is
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Fig. 1. Absolute value of bias vs. frequency offset δ: (a) first
iteration and (b) second iteration.
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Fig. 2. Absolute value of bias vs. number of samples
log2(N).
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Fig. 3. MSE of estimated frequency vs. SNR: (a) δ = 0.1 and
(b) δ = 0.4.

the true frequency. Each experiment is repeated 10,000 times
and MSE of the estimated frequency is calculated. From the
figure, we can see that the two versions of the proposed esti-
mator follow CRLB closely in the entire range of SNR while
the two versions of the A&M estimator become flat after a
threshold.

5. CONCLUSION

In this paper, we theoretically analyze the two versions of the
A&M estimator and show that the estimation biases of the
two versions are not equivalent. The results of the theoreti-
cal analysis indicate that the bias of the first iteration can be
expressed as a third-order polynomial equation. We then pro-
pose to solve the third-order polynomial equation to reduce
the bias of the first iteration and, thereby, reduce the biases of
the later iterations. Experiments show that the proposed new
estimator can significantly reduce the bias and make the esti-
mator follow CRLB in a much broader range of SNR than the
A&M estimator.
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