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ABSTRACT

Since the duality between an n-D transfer matrix and its
transpose does not hold for the n-D Fornasini-Marchesini (F-
M) (local) state-space model, the existing realization method
based on a left matrix fraction description (MFD) is not ap-
plicable to an n-D system described by a right MFD. The
purpose of this paper is to propose a new constructive proce-
dure that can generate an F-M state-space model realization
for an n-D system given by a right MFD. The effectiveness of
the proposed procedure will be demonstrated by a numerical
example.

Index Terms— Multidimensional systems, Fornasini-
Marchesini state-space model, state-space realization, matrix
fraction description.

1. INTRODUCTION

The fundamental issue in the multidimensional (n-D) system
theory to realize a given rational transfer function or trans-
fer matrix by means of the Roesser state-space model or the
Fornasini-Marchesini (F-M) model has attracted considerable
research attention during the last two decades [1–4, 6–8, 12,
13], and some recent results have been successfully applied
to the LFR (linear fractional representation) uncertainty mod-
eling [8, 12] and the implementation of distributed grid sen-
sor networks [9]. It is well known that, different to the one-
dimensional (1-D) case, it is difficult in general to obtain a
minimal state-space realization for the n-D (n ≥ 2) cases
[7]. Therefore, it is of great importance to establish realiza-
tion procedures that can generate low-order n-D state-space
realizations.

In particular, for the problem of realizing an n-D system
or filter in the F-M model, a constructive method has been
proposed by Alpay and Dubi [4]. Since the structural proper-
ties of the given rational transfer function was not taken into
account, the method of [4] usually generates an F-M model
realization with rather high order, and an alternative proce-
dure has been recently established by Cheng et al.[13] which
can produce F-M model realizations with much lower realiza-
tion order than the method of [4]. However, all these methods
are based on a left MFD of the given n-D system, and cannot
be applied to the case where an n-D system is given by a right

MFD as the duality between a transfer matrix and its trans-
pose does not hold for the F-M model. Moreover, it is known
that, for a certain system, the realization order obtained for its
right MFD is in general different to the one obtained for its
left MFD, and in practice the the lower one should be chosen.

The purpose of this paper is to propose a new constructive
procedure that can generate an F-M model realization for an
n-D system given by a right MFD. Therefore, it can be in
general used to obtain an F-M model realization with lower
order than the method of [13] for the case where the sum of
the column degrees of the given transfer matrix is larger than
the sum of its row degrees. The paper is organized as follows.
In the next section, some preliminaries for the F-M model
realization will be presented. In Section 3, the main results of
this paper will be shown. In Section 4, a numerical example
will be presented to show the effectiveness of the proposed
procedure. Finally, conclusions will be given in Section 5.

2. PRELIMINARIES

The n-D F-M local state-space model [1–4] is described by

x(i1 + 1, i2 + 1, . . . , in + 1)
=A1x(i1, i2+1, . . .,in+1)+ . . . +Anx(i1+1, . . . ,in−1+1, in)
+B1u(i1, i2+1, . . .,in+1)+. . .+Bnu(i1+1, . . . , in−1+1,in)

y(i1, . . . , in) = Cx(i1, . . . , in) + Du(i1, . . . , in) (1)

where x(i1, . . . , in) ∈ Rr, u(i1, . . . , in) ∈ Rl, y(i1, . . . , in) ∈
Rm are the (local) state, input and output vectors, respec-
tively; and A1, . . . , An ∈ Rr×r, B1, . . . , Bn ∈ Rr×l, C ∈
Rm×r, D ∈ Rm×l. r is called the order or dimension
of the F-M model. The n-D system (1) is also simply
denoted by (A, B, C, D) with A , (A1, · · · , An) and
B , (B1, · · · , Bn).

The m × l transfer matrix of (1) is given by

H(z1, . . . , zn)=D+C

(
Ir−

n∑
i=1

ziAi

)−1( n∑
i=1

ziBi

)
. (2)

Note that z1, . . . , zn can be viewed as the unit backward-shift
or delay operators here (see, e.g., [10]).

Let z = (z1, . . . , zn), α = (α1, . . . , αn) ∈ Zn, |α| =
α1+· · ·+αn and denote an n-D monomial (or power product)
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zα1
1 · · · zαn

n using the multi-index notation zα = zα1
1 . . . zαn

n .
Then, an n-D polynomial p(z1, . . . , zn) can be expressed as

p(z) =
∑

0≤|α|≤k

pα zα (3)

where k = deg p(z) , max{|α| | ∀α s.t. pα ̸= 0} [4].
An n-D rational function h(z) = q(z)/p(z), with q(z),

p(z) being respectively the numerator and denominator poly-
nomials, is said to be causal if p(0, . . . , 0) ̸= 0, while an n-D
rational matrix H(z) is causal if its every entry is causal [7].

For a given n-D rational transfer matrix H(z), if there
is an n-D system described by (1), or simply, (A, B, C, D)
such that (2) holds true, then (A, B, C, D) is called an F-M
(state-space) model realization of H(z). The necessary and
sufficient condition for a given H(z) to admit an F-M model
realization is that H(z) is causal [8, 13].

In this paper, we will consider the F-M model realization
problem for an m × l n-D transfer matrix given by

H(z) =


q11(z)
p1(z) · · · q1l(z)

pl(z)

...
. . .

...
qm1(z)
p1(z) · · · qml(z)

pl(z)

 (4)

which has the same denominator polynomials pj(z) (j =
1, . . . , l) in each column, respectively, and is in fact equiv-
alent to the right MFD

H(z) = Nr(z)Dr(z)−1 (5)

with Dr(z) = diag{p1(z), . . . , pl(z)} and

Nr(z) =

 q11(z) q12(z) · · · q1l(z)
...

...
. . .

...
qm1(z) qm2(z) · · · qml(z)

 .

It should be emphasized that differing from the n-D
Roesser model [7], the duality between H(z) and its trans-
pose H(z)T does not hold for the F-M model. Namely, for

H(z) = Nr(z)Dr(z)−1

= D + C

(
I −

n∑
j=1

Ajzj

)−1 n∑
j=1

Bjzj , (6)

the corresponding transpose is

H(z)T = (Dr(z)−1)T Nr(z)T

= DT +

(
n∑

j=1

BT
j zj

)(
I −

n∑
j=1

AT
j zj

)−1

CT (7)

which obviously lose the structure of the F-M model. This
fact means that we cannot obtain an F-M model realization
for an n-D system specified by a right MFD, say H(z) =
Nr(z)Dr(z)−1 via the realization for the left MFD H(z)T =
(Dr(z)T )−1(Nr(z)T ) by using the known methods of [4, 13].
Therefore, we have to consider the realization problem for a
right MFD or a system given in the form of (4), separately.

3. THE MAIN RESULTS

In this section, we first consider the special case of an n-D
system with 1 input and m outputs, whose transfer matrix is
accordingly given by a rational column vector, and then show
that the realization for a general m × l transfer matrix can be
obtained by constructing the realization of each column of it.
Specifically, let the rational column vector h(z) be given by

h(z) = [h1(z), . . . , hm(z)]T

where hj(z) = qj(z)/p(z)(j = 1, . . . ,m). The column de-
gree of h(z) is defined as k = max{deg p(z),deg qi(z) (i =
1, . . . , l)}. Moreover, let h(z) be causal, i.e., p(0, . . . , 0) ̸= 0
and assume, without loss of generality, that p(0, . . . , 0) = 1.

The basic idea adopted in this paper can be briefly stated
as follows. Since h(z) is causal, there exists an F-M model
realization (A, B, C, D) such that

h(z) = D + C

(
Ir −

n∑
i=1

ziAi

)−1 n∑
i=1

ziBi. (8)

It is easy to see that D = h(0) = h(0, . . . , 0). Then, letting

G̃(z) =

(
Ir −

n∑
i=1

ziAi

)−1 n∑
i=1

ziBi, (9)

we have that

h(z) − h(0) = CG̃(z). (10)

Equation (9) can also be expressed as

G̃(z) =
n∑

i=1

ziAiG̃(z) +
n∑

i=1

ziBi. (11)

It can be seen from the above arguments that if we can find a
suitable rational column vector G̃(z) for the given h(z) such
that (10) and (11) hold true, then it would be easy to construct
A1, . . . , An, B1, . . . , Bn from (11) and C from (10).

Now, we have the questions what are the conditions such
a G̃(z) should satisfy and how it can be constructed. We first
consider the first question. Let

G̃(z) = [β1(z), . . . , βr̃(z)]T . (12)

where r̃ is a positive integer, βi(z) = zα(i)
/p(z), α(i) =

(α(i)
1 , . . . , α

(i)
n )∈ Zn(i = 1, . . . , r̃) with max{|α(1)|, . . . , |α(r̃)|}

= k. Then, the following result can be given.

Theorem 3.1. If the n-D rational column vector G̃(z) de-
scribed by (12) satisfies the following conditions, then the re-
lations of (10) and (11) will hold true, and thus there exists
an F-M model realization for the given h(z).

(a) All the n-D monomials occurring in h(z) are included
as numerators in some entries of G̃(z);
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(b) Each entry of G̃(z), except the ones having the form
zi

p(z) , i ∈ {1, . . . , n}, can be obtained from another en-

try of G̃(z) by multiplying some zj , j ∈ {1, . . . , n}.

（Proof: Omitted.）
Based on the conditions obtained in Theorem 1, we can

now give a procedure for the construction of such G̃(z) and
the corresponding F-M model realization, which gives an an-
swer to the second question raised previously. Since the re-
alization for the general transfer matrix can be obtained by
constructing the realizations for all the columns respectively
and then combining them into the overall realization for the
transfer matrix, we directly give the matrix version of the re-
alization procedure here.

Let

H(z)=


q11(z)
p1(z) · · · q1l(z)

pl(z)
q21(z)
p1(z) · · · q2l(z)

pl(z)

...
...

qm1(z)
p1(z) · · · qml(z)

pl(z)

,[h1(z) · · ·hl(z)
]

(13)

where pj(0) = 1 ̸= 0 (j = 1, . . . , l). Denote the col-
umn degree of the jth column of H(z) by kj , i.e., kj =
max{deg pj(z), deg qij(z), i = 1, . . . ,m}.

Realization Procedure:

Step 0: j = 0.

Step 1: j = j + 1. If j > l, go to Step 6.
Otherwise, execute the following operations: Collect all the

monomials zα = zα1
1 · · · zαn

n , α1, . . . , αn ∈ {0, 1, . . . , kj},
|α| ≤ kj , occurring in the entries of hj(z) with non-zero
coefficients, and denote by Γj the collected monomials and
by r̃j the size of Γj . Construct a r̃j × 1 column vector G̃j(z)
as

G̃j(z) = [β1j(z) · · ·βr̃jj(z)]T

where each βsj(z), s ∈ {1, . . . , r̃j}, is in the form zα

pj(z) with
zα ∈ Γj .
Note that condition (a) is satisfied for hj(z) and G̃j(z).

Step 2: Check whether G̃j(z) satisfies condition (b). If some

entry, say βij(z) = z
α1
1 ···zαn

n

pj(z) , i ∈ {1, . . . , r̃j}, does not
satisfy condition (b), then insert a new entry

β(r̃+1)j(z) = z
α1
1 ...z

αt−1
t ···zαn

n

pj(z) , αt ≥ 1, t ∈ {1, . . . , n}
into G̃j(z) and then set r̃j = r̃j + 1. It is easy to see that
βij(z) = ztβ(r̃+1)j(z). Repeat the operation until G̃j(z)
satisfies condition (b). Redefine r̃j as the (row) dimension of
the finally updated G̃j(z).

Step 3: Express hj(z) as

hj(z) − hj(0) = CjG̃j(z) (14)

where Cj can be determined by the coefficients of the
numerator polynomials in hj(z). This operation is always
possible as condition (a) is satisfied.

Step 4: Construct the r̃j × 1 column vector Bij for i = 1,
. . . , n in the following way: Set initially all the entries of Bij

to zero. If the sth entry of G̃j(z), i.e., βsj(z) satisfies
βsj(z) = zi

pj(z) , then change the sth entry of Bij to 1, i.e.,
Bij(s) = 1, and keep all the other entries of Bij to be zero.

Step 5: Let

Ĝj(z) = G̃j(z) −
n∑

i=1

Bijzi = [β̂1j , . . . , β̂r̃jj(z)]T .

For v = 1, . . . , r̃j , if β̂vj(z) = β̃vj(z) and β̃vj(z) =
ziβ̃sj(z), i ∈ {1, . . . , n}, s ∈ {1, . . . , r̃j}, s ̸= j express
β̃vj(z)

β̃vj(z) = (A1vjz1 + · · · + Anvjzn)G̃j(z)

with Aivj being a 1 × r̃j vector having 1 at the sth position
and 0 at all the other position, and Atvj = 01×r̃j , t = 1, . . . ,

n, t ̸= i, if β̂vj(z) ̸= β̃vj , the β̂vj(z) must have the from
β̃vj(z) = ziq̂j

pj(z) and it can be expressed as

β̂vj(z) = (A1vjz1 + · · · + Anvjzn)G̃(z)

with Aivj being determined by the coefficients of q̃j(z) and
Atvj = 01×r̃j , t = 1, . . . , n, t ̸= i.

Then, it is easy to see that

G̃j(z) −
n∑

i=1

Bijzi = (A1jz1 + · · · + Anjzn)G̃j(z), (15)

where Aij = [AT
i1j · · · AT

ir̃jj ]
T .

Return to Step 1.

Step 6: For i = 1, . . . , n, set

Ai = diag{Ai1 · · ·Ail} ∈ Rr̃×r̃,

Bi = diag{Bi1 · · ·Bil} ∈ Rr̃×l

where r̃ = r̃1 + · · · + r̃l. Let

G̃(z) = diag{G̃1(z), . . . , G̃l(z)} (16)

and it is easy to see that the row dimension of G̃(z) is just r̃.
It then follows from (14) that

G̃(z) −
n∑

i=1

ziBi =
n∑

i=1

ziAiG̃(z)

or equivalently,

G̃(z) =

(
Ir̃ −

n∑
i=1

ziAi

)−1 n∑
i=1

ziBi. (17)
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Set C = [C1 · · · Cl] ∈ Rr̃×m and D = H(0). It can be seen
from (14), (16) and (17) that

H(z) = C

(
Ir̃ −

n∑
i=1

ziAi

)−1 n∑
i=1

ziBi + D. (18)

By (18), we see that the constructed (A, B, C,D) gives an
F-M realization of H(z) with r = r̃, A = (A1 · · ·An),
B = (B1 · · ·Bn).

4. EXAMPLE

A simple example is presented here to show the effectiveness
of the proposed realization procedure. Consider the following
3 × 2 transfer matrix of a 3-D system:

H(z) =


n11z2+n12z2z3

p1(z)
n41z1z2+n42z2z3

p2(z)

n21z1+n22z3
p1(z)

n51z1z2z3
p2(z)

n31z1z2
p1(z)

n61z2z3
p2(z)


,
[
h1(z) h2(z)

]
.

where z = (z1, z2, z3),

p1(z) = 1 + d11z2 + d12z3 − d13z1z2,

p2(z) = 1 − d21z1 − d22z1z2 − d23z1z2z3.

The column degrees of H(z) are k1 = 2, k2 = 3.
Then, by the proposed procedure, we can obtain the fol-

lowing results for h1(z).

G̃1(z) =
[

z3z2

p1(z)
z2z1

p1(z)
z3

p1(z)
z2

p1(z)
z1

p1(z)

]T

,

A11 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 d13 −d12 −d11 0

, B11 =


0
0
0
0
1

,

A12 =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 d13 −d12 −d11 0
0 0 0 0 0

, B12 =


0
0
0
1
0

,

A13 =


0 0 0 0 0
0 0 0 0 0
0 d13 −d12 −d11 0
0 0 0 0 0
0 0 0 0 0

, B13 =


0
0
1
0
0

,

C1 =

n12 0 0 n11 0
0 0 n22 0 n21

0 n31 0 0 0

 , r̃1 = 5. (19)

Similarly, the following results can be obtained for h2(z).

G2(z)=
[
z3z2z1

p2(z)
z3z2

p2(z)
z2z1

p2(z)
z3

p2(z)
z1

p2(z)

]T

,

A21 =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

d23 0 d22 0 d21

, B21 =


0
0
0
0
1

,

A22 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

, B22 =


0
0
0
0
0

,

A23 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

d23 0 d22 0 d21

0 0 0 0 0

, B23 =


0
0
0
1
0

,

C2 =

 0 n42 n41 0 0
n51 0 0 0 0
0 n61 0 0 0

 , r̃2 = 5.

By using the above results, we can now construct an F-M
realization for the given transfer matrix H(z) as

A1 =
[
A11 0
0 A21

]
, A2 =

[
A12 0
0 A22

]
, A3 =

[
A13 0
0 A23

]
,

B1 =
[
B11 0
0 B21

]
, B2 =

[
B12 0
0 B22

]
, B3 =

[
B13 0
0 B23

]
,

C =
[
C1 C2

]
, D = H(0, 0, 0) = 02×2.

The realization order obtained here by the proposed pro-
cedure is r̃ = r̃1 + r̃2 = 5 + 5 = 10. In contrast, the order
of the realization obtained by first expressing H(z) as a left
MFD and then applying the method of [13] is 48. That is, for
a certain system, the realization order obtained for its right
MFD is in general different to the one obtained for its left
MFD, and thus the realization with the lower order should be
chosen.

5. CONCLUSIONS

A constructive procedure has been proposed for the F-M
model realization of an n-D system described by a right
MFD. In particular, we have first clarified the conditions
that the rational function matrix G̃(z) defined in (12) has
to satisfy, and then based on these conditions, shown a pro-
cedure for constructing G̃(z) and the corresponding F-M
model realization for an n-D system given by a right MFD.
Finally, a numerical example has been presented to illustrate
the effectiveness of the proposed procedure.
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