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ABSTRACT

We obtain the approximate analytic time-frequency spectrum
of the output of a dynamical system when the input is an
arbitrary finite-energy nonstationary signal. Our method is
based on three steps. First, we transform the dynamical sys-
tem to the time-frequency domain. Second, we approximate
the time-frequency spectrum of the input as a sum of short
duration sinusoids through a Fourier series expansion. Fi-
nally, we combine the time-frequency outputs corresponding
to each individual short duration sinusoid, which are known
in exact analytic form. An example shows that the proposed
method requires a few terms only to obtain an approximate
time-frequency output which is indistinguishable from the ex-
act one. Furthermore, our method can clarify how dynamical
systems process nonstationary signals. This processing mech-
anism is of fundamental interest since dynamical systems are
a common model for real-world signals.

Index Terms— Time-frequency analysis, smoothed
Wigner distribution, dynamical systems, nonstationary sig-
nals

1. INTRODUCTION

We consider the dynamical system defined by the differential
equation [1]

an
dnx(t)

dtn
+ . . . + a1

dx(t)
dt

+ a0x(t) = f(t), (1)

where f(t) is the forcing term or input, x(t) is the solution
or output, and a0, . . . , an are deterministic coefficients, with
an 6= 0. The state of the system is the vector whose com-
ponents are x(k)(t), for k = 0, . . . , n − 1, where x(k)(t) =
dkx(t)/dtk and x(0)(t) = x(t), whereas the law of evolu-
tion is the differential equation. We consider deterministic
input signals f(t). This dynamical system models a variety
of real-world signals in electrical engineering [2], mechanical
engineering [3], vibration of structures [4], thermodynamics
[5], and pharmacokinetics [6]. It can also model nonlinear
oscillations with small amplitude [7]. When the input f(t)
is nonstationary, the output x(t) is nonstationary and its fre-
quency content changes with time. Time-frequency analysis
represents this time-varying spectrum in an effective way [8].

Even more effective is the direct time-frequency representa-
tion of (1) [9].

Since real-world signals are inherently nonstationary, un-
derstanding the nonstationary structure of the output is of fun-
damental interest. In [10] the exact analytic time-frequency
spectrum of the output of (1) is derived for a series of com-
mon nonstationary input signals, namely, a delta function, a
linear chirp, a causal sinusoid, and a short-duration sinusoid
(a sinusoid with finite time support). The output is obtained
first in the Wigner distribution representation [11], [12]

Wx(t, ω) =
1
2π

∫ +∞

−∞
x∗(t− τ/2)x(t + τ/2)e−iτωdτ, (2)

and then in the smoothed Wigner domain

Px(t, ω) =
∫ +∞

−∞
w(t− t′)Wx(t′, ω)dt′, (3)

where the smoothing window w(t) is a Hann, Hamming,
or rectangular window. This smoothed Wigner distribution
provides an effective reduction of the interference terms
of the output Wigner representations [10]. The obtained
time-frequency outputs are exact analytic results, since no
approximation method is used.

When f(t) is an arbitrary nonstationary signal, though,
the analytic time-frequency output cannot be computed ex-
actly. In [13] an approximation method for signals filtered by
linear time-invariant (LTI) systems is discussed. The method
approximates the Wigner distribution of the output of the LTI
system by using its transfer function and the Wigner distri-
bution of the input. In [14] the Wigner distribution of the
output for the dynamical system (1) is approximated for the
class of polynomial chirp signals. Other approximation tech-
niques for the Wigner distribution are discussed in [15], [16].
In this article, we instead propose an approximation method
for the smoothed Wigner output of (1) when the input is an ar-
bitrary finite-energy nonstationary signal. The approximation
is obtained by expanding the time-frequency input in a sum
of short duration sinusoids through a Fourier series expan-
sion. The time-frequency output is obtained by adding up the
time-frequency outputs corresponding to the individual short
duration sinusoids at the input, which are derived in exactly
analytic form in [10]. The quality of the approximation is
controlled by the number of terms in the Fourier series.
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We show an example of a system with two resonances
whose input signal is a sinusoid with Gaussian amplitude. By
using five terms only in the Fourier expansion (plus the DC
component) we derive an approximate time-frequency out-
put which is indistinguishable from the exact one, obtained
by numerical simulations. The effectiveness of our approx-
imation method is justified by the fact that, for a wide va-
riety of nonstationary real-world signals, the time-frequency
spectrum is made by concentrated and relatively smooth func-
tions, commonly referred to as components. Approximating
concentrated and smooth functions is, in general, easier than
approximating the signal in the disjoint time and frequency
domains, particularly with the Fourier series decomposition.

Our method can clarify the time-frequency structure of
nonstationary signals. The availability of the analytic time-
frequency output reveals in fact the spectral mechanisms in-
volved in the processing of nonstationary signals. This insight
can hardly be obtained with numerical techniques only. Fur-
thermore, we believe that our method can foster the develop-
ment of improved system design and identification methods
that operate directly in the time-frequency domain.

The article is organized as follows. In Sect. 2 we obtain
the approximation method and in Sect. 3 we discuss an ana-
lytic example.

2. APPROXIMATION METHOD

We start by factoring (1)

an

n∏
m=1

(D − λm)x(t) = f(t), (4)

where D = d
dt , λ1, . . . , λn are the poles of the dynamical

system in time, and we define f(t) and x(t) on the entire time
axis −∞ < t < +∞. The Wigner representation of this
system is [17]

|an|2
4n

n∏
m=1

(∂t − pm(ω))(∂t − p∗m(ω))Wx(t, ω) = Wf (t, ω),

(5)
where ∂t = ∂

∂t , the quantities pm(ω) = 2αm+2i(βm−ω) are
the time-frequency poles, and αm, βm are the real and imag-
inary parts of the generic pole λm, respectively. Equation (5)
is a time-frequency dynamical system, whose input Wf (t, ω)
is the Wigner distribution of the input f(t), and whose output
Wx(t, ω) is the Wigner distribution of the output x(t). We
note that, although the Wigner distribution is nonlinear, the
time-frequency dynamical system is still linear with respect
to the Wigner input Wf (t, ω). Moreover, the coefficients are
a function of ω only and there is no derivative with respect to
ω, therefore we can write the Wigner output as [18]

Wx(t, ω) =
∫ +∞

−∞
Wh(t− t′, ω)Wf (t′, ω)dt′, (6)

where Wh(t, ω) is the impulse response of the time-frequency
system. We rewrite this result as

Wx(t, ω) = L[Wf (t, ω)], (7)

where L is the linear operator representing convolution.
The approximate Wigner input is now obtained via the

Fourier series expansion

W̃f (t, ω) = A0(ω) +
N∑

n=1

An(ω) cos
(

2π

T
nt

)

+
N∑

n=1

Bn(ω) sin
(

2π

T
nt

)
, (8)

where 0 < t < T , and

A0(ω) =
1
T

∫ T

0

Wf (t, ω)dt, (9)

An(ω) =
2
T

∫ T

0

Wf (t, ω) cos
(

2π

T
nt

)
dt, (10)

Bn(ω) =
2
T

∫ T

0

Wf (t, ω) sin
(

2π

T
nt

)
dt. (11)

The time instant T must be chosen so that most of the Wigner
input Wf (t, ω) is concentrated in 0 < t < T . We note that,
for a finite-energy signal g(t), it is [8]

∫ +∞

−∞
|g(t)|2 dt =

+∞∫∫

−∞
Wg(t, ω)dtdω < +∞, (12)

and hence for an arbitrarily small γ > 0 we can always find
two time values t1, t2 such that
∣∣∣∣
∫ t1

−∞

∫ +∞

−∞
Wg(t, ω)dtdω+

∫ +∞

t2

∫ +∞

−∞
Wg(t, ω)dtdω

∣∣∣∣≤γ.

(13)
We point out that Wg(t, ω) is real [8] and, in general, locally
negative The double integrals in (13), though, are positive,
since ∫ +∞

−∞
Wg(t, ω)dω = |g(t)|2 . (14)

By setting f(t) = g(t + t1) and T = t2 − t1 we can hence
state that Wf (t, ω) has most of its information in 0 < t <
T . In a future publication we will show how to extend our
method to a broader class of signals.

We rewrite (8) as

W̃f (t, ω) = A0(ω)PT (t− T/2)

+
N∑

n=1

An(ω)PT (t− T/2) cos (ωnt)

+
N∑

n=1

Bn(ω)PT (t− T/2) sin (ωnt) ,(15)
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where ωn = 2πn/T and PT (t) is the rectangular window
defined as PT (t) = 1 for |t| ≤ T/2, and PT (t) = 0 for
|t| > T/2. By using the notation of [10], we have

W̃f (t, ω) = A0(ω)FSDC(t, ω; T )

+
N∑

n=1

An(ω)FSDS (t, ω;ωn, π/2, T )

+
N∑

n=1

Bn(ω)FSDS (t, ω; ωn, 0, T ) , (16)

where FSDC, FSDS are the generalized inputs corresponding to
the short duration constant (SDC) and short duration sinusoid
(SDS), defined as

FSDC(t, ω;T ) = PT (t− T/2), (17)
FSDS(t, ω;ωn, ϕ, T ) = PT (t− T/2) sin(ωnt + ϕ). (18)

The term generalized inputs indicates that both FSDC and FSDS
do not represent proper Wigner distributions. From (7) it is

W̃x(t, ω) = L[W̃f (t, ω)]. (19)

We replace W̃f (t, ω) and we use the linearity of L, obtaining

W̃x(t, ω) = A0(ω)L [FSDC(t, ω; T )]

+
N∑

n=1

An(ω)L [FSDS (t, ω;ωn, π/2, T )]

+
N∑

n=1

Bn(ω)L [FSDS (t, ω; ωn, 0, T )] .(20)

It is

W̃x(t, ω) = A0(ω)XSDC(t, ω; T )

+
N∑

n=1

An(ω)XSDS (t, ω;ωn, π/2, T )

+
N∑

n=1

Bn(ω)XSDS (t, ω; ωn, 0, T ) , (21)

where XSDC, XSDS are the generalized outputs, derived in
[10] by solving (5) when the forcing terms are the general-
ized inputs FSDC, FSDS. The generalized input/output tech-
nique simplifies dramatically the analytic calculation of the
time-frequency outputs. We do no report the explicit general-
ized outputs here for conciseness.

Finally, from (3), the approximate smoothed Wigner out-
put P̃x(t, ω) is given by

P̃x(t, ω) =
∫ +∞

−∞
w(t− t′)W̃x(t′, ω)dt′. (22)

Since convolution is a linear operation, we can write

P̃x(t, ω) = A0(ω)X̄SDC(t, ω; T )

+
N∑

n=1

An(ω)X̄SDS (t, ω;ωn, π/2, T )

+
N∑

n=1

Bn(ω)X̄SDS (t, ω; ωn, 0, T ) , (23)

where X̄SDC, X̄SDS are the smoothed generalized outputs
derived in [10] by convolving the generalized outputs with
the smoothing window w(t). We do not report the explicit
smoothed generalized outputs here for brevity.

We point out that, for finite-energy input signals, we can
always increase the time interval T and the number of terms
N in the expansion to reach the desired approximation qual-
ity. A high quality approximation with a small number of
terms N , though, can be achieved with input signals made by
concentrated components. This class of signals is extremely
common in physical systems.

3. EXAMPLE

We consider a system of order n = 4 with two resonances,
defined by the poles (we use dimensionless quantities for sim-
plicity)

λ1 = −2.5 + 6πi, λ2 = λ∗1,
λ3 = −0.8 + 15πi, λ4 = λ∗3.

(24)

We take a sinusoid with Gaussian amplitude as the input,

f(t) = e−(t−T/2)2/(4σ2)+iω0(t−T/2), (25)

with T = 4 and σ = T/10 = .4. The peak of the Gaussian
amplitude is at t = T/2. The Wigner distribution of this input
signal is the Gaussian function [8]

Wf (t, ω) =
σ√
π/2

e−(t−T/2)2/(2σ2)−2σ2(ω−ω0)
2
. (26)

Since Wf (t, ω) is symmetric with respect to t = T/2, the
coefficients Bn in (11) are all zero, and (23) becomes

P̃x(t, ω) = A0(ω)X̄SDC(t, ω;T )

+
N∑

n=1

An(ω)X̄SDS (t, ω; ωn, π/2, T ) ,(27)

for 0 < t < T . By using the properties of the Fourier series,
it is

A0 = 2
σ2

T
e−2σ2(ω−ω0)

2
, (28)

An = 4(−1)n σ2

T
e−2σ2(ω−ω0)

2
e−2π2σ2n2/T 2

. (29)

We note that these coefficients are actually computed for the
periodic function Gf (t, ω) =

∑+∞
k=−∞Wf (t−kT, ω). Since
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Fig. 1. Wigner input and approximate analytic smoothed
Wigner outputs. The plot shows the Wigner input Wf (t, ω)
(dashed box), obtained when ω0 = 10.5π and displayed as
a reference, as well as the approximate analytic smoothed
Wigner outputs obtained when ω0 = 6π and ω0 = 15π, cor-
responding to the two resonant frequencies of the system. The
response for the higher resonant frequency lasts longer due to
the smaller damping of this resonance. The approximate ana-
lytic outputs are obtained with N = 5 terms (plus a constant).

T À σ it is Gf (t, ω) ≈ Wf (t, ω) for 0 < t < T . Replacing
the Fourier coefficients in (27) gives

P̃x(t, ω) = 2
σ2

T
e−2σ2(ω−ω0)

2
X̄SDC(t, ω; T )

+
N∑

n=1

4(−1)n σ2

T
e−2σ2(ω−ω0)

2

× e−2π2σ2n2/T 2
X̄SDS (t, ω;ωn, π/2, T ) , (30)

which is the desired approximate time-frequency output.
In Fig. 1 we show this result by superimposing three

time-frequency distributions. First, in the dashed box we
show the input Wigner Wf (t, ω) computed for ω0 = 10.5π.
This Wigner input is displayed as a reference to understand
the shape of the resulting time-frequency outputs. Sec-
ond, we show the approximate smoothed Wigner output
P̃x(t, ω) computed when the frequency of the input sinusoid
is ω0 = 6π, which corresponds to the lower resonant fre-
quency. We see that the time-frequency output is centered
about the resonant frequency, and its peak is delayed with
respect to the peak of the input Wigner Wf (t, ω) due to the
processing time required by the system. The approximation
is obtained with N = 5. Third, we show the approximate
smoothed Wigner output P̃x(t, ω) when ω0 = 15π, which
corresponds to the higher resonant frequency. We see that
this time-frequency output is further delayed, with respect to
the Wigner input Wf (t, ω), than the output at the lower reso-
nant frequency. The increase in the delay is due to the smaller

Fig. 2. Smoothed Wigner outputs obtained by numerical sim-
ulations. The smoothed Wigner outputs are practically indis-
tinguishable from the approximate analytic versions shown in
Fig. 1.

damping of this resonance, which also causes the output to
last longer in time. Also this approximation is obtained with
N = 5.

In Fig. 2 we show the same time-frequency distributions
of Fig. 1 obtained by numerical computations. We see that
the approximate smoothed Wigner outputs and the numerical
ones are practically indistinguishable. The percent error of
the approximation, defined as

ε = 100

∫ +∞
−∞

∫ +∞
−∞

(
P̃x(t, ω)− P Num

x (t, ω)
)

dtdω
∫ +∞
−∞

∫ +∞
−∞ P Num

x (t, ω)dtdω
, (31)

where P Num
x (t, ω) is the smoothed Wigner output obtained by

numerical methods, is in fact smaller than 0.3% for both res-
onances.

4. CONCLUSIONS

We have developed a method to evaluate the approximate
analytic time-frequency output of a dynamical system whose
input is an arbitrary finite-energy nonstationary signal. The
method is based on a Fourier series approximation of the
time-frequency input signal. The quality of the approxima-
tion can be controlled by changing the number of terms in
the Fourier expansion, although an example shows that a few
terms only produce an approximation of the time-frequency
output that is indistinguishable from the exact one. The
approximate analytic time-frequency output can clarify the
spectral mechanism involved in the generation of nonstation-
ary signals. This result can be hardly achieved with numerical
methods only.
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