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ABSTRACT

Negative co-occurrence is a common phenomenon in many
signal processing applications. In some cases the signals
involved are sparse, and this information can be exploited
to recover them. In this paper, we present a sparse learn-
ing approach that explicitly takes into account negative co-
occurrence. This is achieved by adding a novel penalty term
to the LASSO cost function based on the cross-products be-
tween the reconstruction coefficients. Although the resulting
optimization problem is non-convex, we develop a new and
efficient method for solving it based on successive convex
approximations. Results on synthetic data, for both complete
and overcomplete dictionaries, are provided to validate the
proposed approach.

Index Terms— negative co-occurrence, sparsity-aware
learning, LASSO, sparse coding

1. INTRODUCTION

Co-ocurrence has been extensively exploited during the last
forty years in areas such as computer vision at both low [1]
and high [2] processing levels, but it has received much less
attention by the signal processing community. However, co-
occurrence is relatively common in signal processing appli-
cations, especially negative co-occurrence. Focusing on the
unidimensional case, a typical example can be found in the
biomedical signal processing of intracardiac electrograms: af-
ter a cardiac cell activation there exists a so called “refractory
period” where the cell cannot be excited [3]. A second exam-
ple can be found in the analysis of spectrometric data stem-
ming from Type I counters, where a detector (e.g., Geiger)
which records incoming particles has a specific associated
dead time during which the system is not able to record an-
other particle interaction [4].
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SECT (TEC2012-38058-C03-01).

Both of the above mentioned applications share another
common feature: the signals involved admit a sparse repre-
sentation using overcomplete dictionaries, i.e., they can be
analyzed using sparse coding techniques [5], [6]. In sparse
coding or compressed sensing techniques, the use of addi-
tional information to obtain a sparsity pattern in accordance
with some physical/biological knowledge has already been
investigated in [7]. Two additional examples are the fused
LASSO [8], which imposes both sparsity and flatness of the
obtained coefficients profile (making it valuable to describe
mass spectroscopy data), and the elastic net, which favors
sparsity obtained by correlated variables [9]. Recent contribu-
tions have also investigated, both theoretically and practically,
the use of algorithms which encourage sparsity by clusters
of coefficients [10, 11]. However, to the best of our knowl-
edge, encouraging sparsity by taking into account negative
co-occurrence has not been considered yet.

In this paper we introduce a novel sparse learning algo-
rithm that explicitly enforces negative co-occurrence by in-
corporating a new penalty term, based on the cross-products
of the reconstruction coefficients, to the LASSO cost func-
tion. Hence, we call our approach cross-products LASSO
(CP-LASSO). Unfortunately, this leads to a non-convex op-
timization problem, but we show that it can be solved effi-
ciently in an approximate way using successive convex ap-
proximations (SCA). Results on synthetic data, both for com-
plete and overcomplete dictionaries, are provided to validate
the proposed approach.

The paper is organized as follows. Section 2 shows the
problem formulation. The novel regularization function and
its efficient minimization using SCA are described in detail
in Section 3. Section 4 shows numerical results on several
synthetic data sets. Finally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

2.1. Signal Model

In this paper we focus on discrete-time signals generated by
an unknown latent sparse activation signal going through an
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LTI system, and contaminated by noise,1

y[n] = p[n] ∗ h[n] + w[n], (1)

where w[n] is the discrete-time noise process, h[n] is the
channel’s impulse response (we assume a causal FIR channel
of length L), ∗ denotes the standard linear convolution oper-
ator, and p[n] is the sparse latent signal (also known as spike
or activations train),

p[n] =

K−1∑
k=0

Akδ[n−Nk], (2)

where δ[n] denotes Kronecker’s delta, K is the total number
of spikes in p[n], Ak is the amplitude of the k-th spike and
Nk its arrival time. We also assume that after each activation
there is a negative co-occurrence period during which new
activations cannot occur, i.e., Nk−Nk−1 > Nmin. Substitut-
ing (2) into (1), the signal model finally becomes

y[n] =

K−1∑
k=0

Akh[n−Nk] + w[n] (3)

This discrete-time model can be formulated more com-
pactly in matrix form as

y = Ha + w, (4)

where w = [w[0], . . . , w[N−1]]> is theN×1 noise vector;
a = [a[0], . . . , a[N − 1]]> is the N × 1 sparse amplitudes
vector (a[n] 6= 0⇔ n = Nk for some k); and H is theN×N
channel matrix.

2.2. Reconstruction Model

If the channel’s impulse response is known, then we can use
(4) to recover the activations from the observations by im-
posing some of the sparse restrictions described in Section
3. Unfortunately, h[n] is often unknown, and estimating it di-
rectly from the observations can be problematic for low signal
to noise ratios (SNRs). Besides, in many applications we are
interested in the arrival times of the activations rather than
in h[n]. In these cases, a common alternative is performing
sparse learning on the following reconstruction model

y = Φβ + ε, (5)

where Φ = [Φ1, Φ2, . . . , ΦM ] is the N ×MN dictionary
matrix, with M ≥ 1 indicating the number of basis signals
in the dictionary and Φm being the m-th N × N dictionary
matrix (1 ≤ m ≤ M ), constructed from the m-th discrete-
time basis waveform, φm[n] 6= 0 ⇔ 0 ≤ n ≤ Nm − 1; β =
[β>1 , . . . , β

>
M ]> is the MN × 1 sparse coefficients vector,

1This formulation can be easily extended toQ activation signals [12, 13].
However, here we focus on a single activation for the sake of simplicity.

with βm = [βm[0], . . . , βm[N − 1]]> for 1 ≤ m ≤ M ;
and ε = [ε[0], . . . , ε[N − 1]]> is the N × 1 excess noise
vector. On the one hand, when M = 1 we have a complete
dictionary, and (5) has the same structure as (4), although the
basis functions can be different. On the other hand, Φ is an
overcomplete dictionary when M > 1.

3. RESTRICTED SPARSE LEARNING

3.1. Prior Work: LASSO plus post-processing

A first approach for minimizing the reconstruction error of the
model, subject to a sparsity contraint and respecting the nega-
tive co-ocurrence period, was recently proposed in [12]. First
of all, an initial estimate of β is obtained, using LASSO [14],

β̂ = arg min
β∈RMN

{
‖y −Φβ‖22 + λ ‖β‖1

}
, (6)

where ‖x‖2 denotes the L2 norm of x, ‖β‖1 is the L1 norm
of β, and λ is the regularization parameter. Unfortunately,
the reconstruction obtained using (6) is unlikely to respect the
restriction between activation times imposed by the negative
co-occurrence period, especially for unknown channels and
low SNRs. Hence, after the computation of β̂, [12] intro-
duces a second step that estimates the samples associated to
the arrival times of the spikes recursively as follows:

N̂k = arg max
1≤n≤N

{
‖β̂[n]‖1I(η < ‖β̂[n]‖1 < ‖β̂[N̂k−1]‖1)

}
s.t. |N̂k − N̂`| > Nmin, for 1 ≤ ` ≤ k − 1, (7)

where β̂[n] = [β̂1[n], . . . , β̂M [n]]>, I(·) is an indicator func-
tion, i.e., a function that takes a value equal to one if the logi-
cal condition is fulfilled, and zero otherwise; and η is a user-
defined threshold, used to discard the β̂[n] with a small L1

norm, which provide no information about spike localization.

3.2. Cross-Products LASSO (CP-LASSO)

A novel approach, based on introducing the restriction im-
posed by the negative co-occurrence period into the cost func-
tion, is proposed here. This can be done by incorporating an
additional penalty term to the LASSO cost function which
discourages the presence of non-null coefficients associated
to nearby basis functions. The new cost function proposed is

Jone-step =‖y −Φβ‖22 + λ ‖β‖1

+ ρ

N−1∑
n=0

M∑
m=1

Nmin∑
k=−Nmin

k 6=0

‖βm[n]β[n+ k]‖0, (8)

where ‖x‖0 denotes the L0 “norm” of x, ρ is an addi-
tional regularization parameter, and β[n + k] = [β1[n +
k], . . . , βM [n + k]]> is an M × 1 vector containing all the
coefficients associated to the (n+ k)-th sample.
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Since the L0 “norm” is generally intractable, the usual ap-
proach taken is substituting it by the more tractable L1 norm,
which provides an equivalent solution under certain condi-
tions. Performing this standard relaxation, and after some al-
gebra [13], the modified cost function given by (8) turns into

JCP-LASSO = ‖y −Φβ‖22 +λ‖β‖1 +ρ‖(B>⊗IM )β‖1, (9)

where⊗ denotes the Kronecker product of two matrices [15];
IM is the M ×M identity matrix; and B> is a 2MNmin×N
matrix whose n-th column, following the notation of [16], is
given by bn = B>(:, n) = [β>[n − Nmin], . . . , β>[n −
1], β>[n+ 1], . . . , β>[n−Nmin]]>, with β = 0 for k < 0.
Since the novel cost function incorporates the cross-products
between reconstruction coefficients to the LASSO, we call the
novel approach cross-products LASSO (CP-LASSO).

3.3. Successive Convex Approximations (SCA)

Unfortunately, the new penalty term introduced in (9) leads
to a complicated non-convex optimization problem. There-
fore, in this subsection we present an algorithm, based on suc-
cessive convex approximations (SCA) [17, 18, 19], for find-
ing a (local) solution of the constrained version of the Cross-
Products LASSO. In particular, the problem to be solved can
be formulated as

minimize
β,c

‖β‖1 + c>Γc

subject to |βk| = ck, k = 1, . . . ,MN

‖y −Φβ‖2 ≤ ξ,

(10)

where βk (resp. ck) is the k-th entry of β (resp c), ξ is some
user-defined tolerable residual error, and the symmetric ma-
trix Γ, with zeros along its main diagonal, penalizes the cross
products of the absolute values of β. That is, the entry γk,`
in the k-th row and `-th column of Γ, induces a penaliza-
tion γk,`ckc` = γk,`|βk||β`|. Here we must point out that the
proposed algorithm considers the general case in which some
γk,` can take negative values, then rewarding co-ocurrence.

The optimization problem in (10) is difficult to solve,
since the cost function is not convex whenever Γ 6= 0. More-
over, the first set of constraints is not convex. However,
noting that ‖β‖1 = 1>c, and introducing the constraint2

1 + 2Γc ≥ 0, we ensure that the cost function increases with
ck. Thus, the optimization problem is

minimize
β,c

1>c + c>Γc

subject to |βk| ≤ ck, k = 1, . . . ,MN

‖y −Φβ‖2 ≤ ξ
1 + 2Γc ≥ 0,

(11)

2Although this constraint is redundant at this point, and it can be com-
pletely avoided if all γk,` ≥ 0, it will become relevant soon.

Algorithm 1 SCA for Cross-Products LASSO
Input:Γ, Φ, ξ and y.
Output: Recovered signal β.
Initialize c0 = 0.
Obtain the Matrices Γ+ and Γ− from the EV of Γ
repeat

Solve the convex optimization problem in (12)
Update c0 = c

until Convergence

where the main difficulty resides in the non-convex cost func-
tion. In order to deal with this difficulty and find a solution
of the original Karush-Kuhn-Tucker (KKT) conditions [20],
we apply the SCA methodology [17, 18, 19]. The main idea
is replacing the non-convex functions by a sequence of local
convex approximations, which must satisfy three conditions:

• The value of the original function, f(·), and its convex
approximation, f̃(·), at the reference point x0 should
be the same, i.e., f(x0) = f̃(x0).

• The gradients at the reference point should coincide,
i.e., ∇f (x0) = ∇f̃ (x0).

• The convex approximation must be an over-estimator
of f(·), i.e., f̃(x) ≥ f(x), ∀x.

In our particular case, given a reference value c0 for the vector
c, the cost function can be approximated by 1>c + c>Γ+c +
2c>0 Γ−(c− c0), where Γ+ and Γ− are the positive semidef-
inite and negative semidefinite parts of Γ = Γ+ + Γ−. It
is easy to check that this approximation satisfies the previous
conditions, and therefore, the convex problem to be solved in
each iteration of the proposed algorithm is finally,3

minimize
β,c

1>c + c>Γ+c + 2c>0 Γ−(c− c0)

subject to |βk| ≤ ck, k = 1, . . . ,MN

‖y −Φβ‖ ≤ ξ
1 + 2Γc ≥ 0.

(12)

The overall procedure is summarized in Algorithm 1, where
the initial value for c (c0 = 0), reduces the cost function to
the convex envelope of the original non-convex cost function.

4. NUMERICAL RESULTS

4.1. Known Channel Matrix

For the first experiment we randomly generate channels of
length L = 20 first, with h̃[n] following a zero-mean and
unit-variance Gaussian distribution, i.e., h̃[n] ∼ N (0, 1), and
then obtain h[n] through an energy normalization: h[n] =

3Note that the constraint 1+2Γc ≥ 0 plays a crucial role in (12), ensur-
ing that the first set of constraints is satisfied with equality |βk| = ck .
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LASSO CP-LASSO
SNR (dB) Nd(0) Nd(1) Nd(2) Nv Nfa Nd(0) Nd(1) Nd(2) Nv Nfa

0 18.94 32.10 37.96 95.15 47.63 16.22 31.32 36.58 61.52 40.87
5 13.51 16.07 16.24 8.13 19.60 18.16 27.81 29.42 1.04 7.56
10 9.84 10.10 10.11 2.05 28.61 19.13 26.59 26.95 0 8.39
15 10.04 10.17 10.17 0.94 28.25 19.67 25.78 25.94 0 9.55
20 9.50 9.58 9.58 0.70 28.99 20.06 26.46 26.54 0 8.45

Table 1. Results (averaged over 100 experiments) for unknown channel matrix using a Hanning window as basis element in
the reconstruction dictionary when L = Nmin = 10.

LASSO CP-LASSO
Nmin K̄ Nr Nd Nfa Nr Nd Nfa

5 73.32 34.41 34.12 0.29 60.79 52.81 7.97
10 42.02 11.66 11.65 0.01 31.38 29.31 2.07
15 29.54 5.73 5.73 0.00 19.24 18.85 0.39
20 22.86 3.33 3.33 0.00 13.33 13.14 0.18
25 18.62 3.38 3.38 0.00 12.15 12.11 0.04

Table 2. Results (averaged over 100 experiments) for random
known channel matrices when L = 20 and SNR = 10 dB.

h̃[n]/
√

1
L

∑L−1
n=0 |h̃[n]|2. The amplitudes of the arrivals also

follow a Gaussian distribution, Ak ∼ N (0, 1), and the num-
ber of zero samples between two consecutive spikes is equal
to Nmin plus a discretized Poisson process with rate κ (i.e.,
the expected inter-arrival time is Nmin + (κ + 1)/κ). The
channel matrix is assumed to be known, so we set Φ = H.

Table 2 shows the results when κ = 1 and N = 500 for
LASSO (which corresponds to using (10) with Γ = 0) and
CP-LASSO (ρ = 100). Since we are interested in recovering
the latent spikes, this table shows the number of activations
recovered (Nr), the number of correctly located detections
(Nd), and the number of false alarms (Nfa), altogether with
the average number of spikes (K̄). CP-LASSO outperforms
LASSO regarding Nd, although at the expense of a higher
value of Nfa in this case.

4.2. Unknown Channel Matrix

For the second example we use activations that follow the
shape given in [21] for electrograms with L = 11. The am-
plitude of the activations is again normally distributed, i.e.,
Ak ∼ N (0, 1), and the negative co-occurrence period is set
to Nmin = 10. The activations arrive periodically now, with
a period equal to Nmin + 1. We assume an unknown channel
with a known length, and use a Hanning window of length
L = 10 to generate the reconstruction dictionary. Table 1
shows the results for L = 10 in terms of the number of correct
detections (Nd(k) is the number of detections within distance
k of a true activation, i.e., Nd(0) = Nd in Table 2), num-
ber of violations of the negative co-occurrence period (Nv)
and number of false alarms (Nfa). In this case CP-LASSO
outperforms LASSO w.r.t. all performance measures.

Fig. 1. Activations recovered using LASSO (dashed black line) and
CP-LASSO (each colour corresponds to a different basis function).

Finally, we show an example of the activations recovered
using an overcomplete dictionary with M = 3 in Figure 1.
The synthetic data are generated using a random channel with
L = 20, N = 100 and Nmin = 10. We build the recon-
struction dictionary using the mexican hat wavelet with three
different variances: σ2

1 = 0.1, σ2
2 = 1 and σ2

3 = 10. The
signal contains 8 activations. Using LASSO we recover 8 ac-
tivations, not always significant, and we have two violations
of the negative co-occurrence period. Using CP-LASSO we
only detect 6 activations, but there are no violations of the
co-occurrence period and all of them are relevant.

5. DISCUSSION

In this paper we have shown how to incorporate a negative
co-occurrence restriction into a sparse learning problem. The
proposed approach builds on LASSO, adding a novel penalty
term. Although some authors have derived approaches to ob-
tain sparse signals that respect some physical/biological re-
strictions in the past (see e.g. [7, 8, 9]), no approach based
on the cross-products has been developed in the literature as
far as we know. Finally, we also make use of the successive
convex approximations (SCA) idea in order to optimize the
resulting non-convex problem.
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