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ABSTRACT

Various tensor decompositions use different arrangements of factors
to explain multi-way data. Components from different decompo-
sitions can vary in the number of parameters. Allowing a model
to contain components from different decompositions results in a
combinatoric number of possible models. Model selection balances
approximation error and the number of parameters, but due to the
number of possible models, post-hoc model selection is infeasible.
Instead, we incrementally build a model. This approach is analogous
to sparse coding with a union of dictionaries. The proposed greedy
approach can estimate a model consisting of a combination of tensor
decompositions.

Index Terms— tensor decompositions, greedy algorithm,
model selection

1. INTRODUCTION

Linear synthesis models are fundamental to multivariate signal pro-
cessing tasks such as denoising, compression, and classification. In
this work we explore an approach to approximate data arranged in
a tensor, or multiway array, via a combination of data-dependent
bases. The bases are chosen from two or more sets each estimated
by tensor decomposition yielding orthogonal components.

Truncated singular value decomposition (SVD) finds the optimal
reduced rank approximations of data stored in matrices, as proven by
Eckart and Young [1]. In multivariate signal processing, there may
be multiple ways the signal can be arranged before approximation.
For instance, if the signal is arranged as a tensor, then a large number
of decomposition/approximation models have been proposed that
exploit structure along different modes of the data.

Here we investigate tensor decompositions that can be written
as a summation of component tensors each formed as tensor outer
products. Decompositions of this nature are of interest because or-
thogonality can be enforced on any of the factors of the outer product
and the resulting components tensors will be orthogonal [2]. This
enables us to greedily build tensor models.

Decompositions that are combinations of tensor outer products
include the canonical polyadic decomposition (CPD) [3] (also called
CANDECOMP [4] or PARAFAC [5]), certain cases of the block ten-
sor decomposition [6], and two-factor outer product expansions such
as “Tucker1” models [7, 8, 9]. Notable exceptions are general Tucker
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models [8]. Additional block-based decompositions can be posed as
tensor outer products by leveraging the “tensor Kronecker product”
[9, 10, 11].

A general multilinear model can be formed by combining mod-
els with different arrangements and ranks. This is what we refer
to as a heterogeneous model. Examples of these models include
the rank-(Lr, Lr, 1) block term decomposition in [6], and the Kro-
necker tensor decompositions in [10, 11, 12]. Another example
would be using a combination of rank-(L,L, 1), rank-(M, 1,M),
and rank-(1, N,N) decompositions.

Depending on the data’s structure, multilinear models with dif-
ferent arrangements and ranks may be better approximations. For a
user-chosen number of parameters different models can be formed,
and the model yielding the lowest approximation error may be cho-
sen. Alternatively, for models with varying number of parameters,
model selection criterion can choose the optimal model from a set
with various number of parameters [13, 14, 15, 16, 17, 18].

Post-hoc selection works in homogeneous models. However,
due to the flexibility in heterogeneous models, model selection is
difficult as there is a combinatorial number of models formed from
different combinations of arrangements each with different ranks.

When the components are orthogonal and ordered, the number
of components can be chosen post-hoc. While tensor components in
the same arrangement can be made orthogonal, it is more difficult
for components from different arrangements. Without orthogonal-
ity, truncating the rank within each arrangement separately does not
yield the same solution as running the decomposition constrained to
the truncated rank.

We propose using an iterative algorithm, similar to the canon-
ical one proposed by Kolda [2], to greedily select the combination
of arrangements and ranks to form a parsimonious heterogeneous
model. The greedy selection is in the same manner as sparse coding
algorithms that select vectors from a union of dictionaries [19, 20].
Here the data-dependent bases are estimated from the residual on
each iteration, exploiting any multilinear structure in the data. The
final number of components can be chosen post-hoc, from the mod-
els formed at iteration, based on a model selection criteria.

2. APPROACH

The approach is motivated by tensor decompositions with orthogo-
nal tensor components, orthogonality can be easily enforced for ten-
sors formed by a series of tensor outer products [2]. We use the nota-
tion A to denote a tensor. An order-N tensor has N dimensions (or
modes) with the size for the dimensions denoted I1× I2×· · ·× IN .
Given a order-P tensor B with size J1 × J2 × · · · × JP , the outer
product of A and B is the order-(N + P ) tensor C = A ◦ B

with size I1 × · · · × IN × J1 × · · · × JP with entries such that
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Ci1,i2,...,iN ,j1,...,jP = Ai1,i2,...,iNBj1,j2,...,jP . Herein the tensors
in a series of outer products A1 ◦A2 ◦ · · · ◦AM are called factors,
and each summand Ci in a linear combinations of tensors

∑

i Ci are
referred to as components.

Consider a series of outer products when each A
n ≡ a

n is
a vector. An order-N tensor X is considered to be rank-1 if it is
formed from the outer product of N vectors, i.e., it can written as
X = a

1 ◦ a
2 ◦ · · · ◦ a

N . Otherwise, the rank is R and is equal
to the minimal number of rank-1 tensors needed such that X =
∑R

r=1
a
1
r◦· · ·◦a

N
r [21]; this is the canonical polyadic decomposition

(CPD).
Certain block term decompositions [6] consider more general

ranks. An order-3 tensor is rank-(L, L, 1) if it can be written as
an outer product between a rank-L matrix A =

∑L
l=1

blc
T
l and a

vector a, i.e., X = A
1 ◦A2 = A ◦ a.The rank one term could be

assigned to any mode by reordering the modes. Generally, an order-
N tensor is rank-(L, . . . , L, 1) if it can be written as X = A

1 ◦A2

where A
1 =

∑L
l=1

a
1
l ◦ · · · ◦ a

N−1

l is an order-(N − 1) tensor
with rank L and A

2 is a vector. A tensor can be decomposed into a
set of rank-(Lr , . . . , Lr, 1) tensors as X =

∑R
r=1

A
1
r ◦A

2
r, where

A
1
r has rank-Lr and A

2
r is a vector. Under certain conditions this is

unique decomposition [6].
The two-factor product expansion [9, 10] takes the form X =

∑R
r=1

A
1
r ◦A

2
r , where A1

r and A
2
r are general tensors with no spe-

cific structure or restriction on rank. The Tucker1 decomposition
formed by an outer product between a matrix and vector is of this
form [14].The tensor can be reshaped into a matrix, using rearrang-
ing and unfolding [9, 10], where each of the factors is treated as
vectors and matrix based decompositions (SVD, NMF) are easily
applied.

2.1. Constraints

For this approach, we consider combinations of normalized and pos-
sibly orthogonal tensors with real numbers as the entries. The inner
product of two tensors of the same size is

〈Am
,A

n〉F = vec(Am)T vec(An). (1)

The Frobenius norm of A can be computed as

‖A‖F =
√

〈A,A〉F . (2)

For two tensors C1,C2 each formed from a series of outer prod-
ucts of equal sizes Cr = A

1
r ◦ · · · ◦A

N
r , orthogonality of any fac-

tor is a sufficient condition for their orthogonality: if ∃n such that
〈An

1 ,A
n
2 〉F = 0 then 〈C1,C2〉F = 0.

Ensuring this sufficient condition is easy for a set of component
tensors (with the same size factors) when at least one factor in the
outer product is a rank-1 tensor. The rank-1 factor for each compo-
nent tensors is vectorized, and all of these vectors are concatenated
into a matrix (number of components by the number of elements in
the rank-1 tensor). Then the closest set of orthogonal vectors are
found via the SVD of this factor matrix. Care should be taken in
choosing which mode or modes correspond to the orthogonal fac-
tors.

2.2. A general tensor product decomposition

A tensor X can be represented by a combination of tensors Cr for
r = 1, . . . , R where each tensor has unit norm ‖Cr‖F = 1 and is
formed as the tensor product between Nr factors An

r n = 1, . . . , Nr

[2]. In constraining the norm, the coefficients s1, · · · , sR contain the
contributions of each summand

X =
R
∑

r=1

srCr =
R
∑

r=1

sr

(

A
1
r ◦ · · · ◦A

Nr
r

)

. (3)

If N1 = N2 = · · · = NR and all An
1 , . . . ,A

n
R are the same

size and rank for n = 1, . . . , N1, then the decomposition is deemed
homogeneous. Alternatively, if the decomposition is heterogeneous,
then it can be written as a combination of P ≤ R homogeneous
models. Let Gp denote the indexes in the pth group, by definition
G1 ∪ · · · ∪ GP = {1, . . . , R} and Gi ∩ Gj = ∅, ∀i 6= j.

X =
P
∑

p=1

∑

r∈Gp

srCr =
P
∑

p=1

∑

r∈Gp

sr

(

A
1
r ◦ · · · ◦A

Nr
r

)

. (4)

We restrict component tensors in the same group to be orthog-
onal, i.e., ∀p 〈Ci,Cj〉F = 0 {(i, j) ∈ Gp : i 6= j}. The pro-
posed algorithm in Section 2.5 uses an iterative method where the
candidate component tensors could be forced to be orthogonal to
previously added components [2]. We do not explicitly enforce this
constraint, but since the components are estimated from the resid-
ual, the newly added components are approximately orthogonal to
the previously added components. Thus, the result is an orthogonal
decomposition [2] where ∀i 6= j 〈Ci,Cj〉F = 0.

2.3. Approximation

For linear model approximation, the objective is to minimize the dis-

tance between a model, here X̂ =
∑R̂

r=1
sr

(

A
1
r ◦ · · · ◦A

Nr
r

)

and
the original tensor X , say in terms of Frobenius norm

D(X‖X̂ ) = ‖X − X̂‖F = ‖X −
R̂
∑

r=1

sr

(

A
1
r ◦ · · · ◦A

Nr
r

)

‖F .

(5)
A special case is the homogeneous decomposition with X =

∑R
r=1

A
1
r ◦ A

2
r , this decomposition is unique up to an ordering by

applying the SVD to a particular unfolding of the tensor. If one fac-
tor is a vector this is a Tucker1 model [7, 8, 9]. As in classic SVD, the
optimal approximation X̂ is found by taking only the largest R̂ sin-
gular values and their corresponding singular vectors [9]. Polyadic
or rank constrained block term decompositions [6] require using al-
ternating least square algorithms [2, 22] to estimate the factors.

In practice, a model selection criterion is often needed to sys-
tematically choose how many tensors of each size are needed in the
model.

2.4. Model Selection

Increasing the number of parameters in the linear model will always
decrease the approximation error; however, to identify underlying
structure in the tensor, a model selection criterion is needed to bal-
ance the number parameters with the approximation error. A num-
ber of heuristics and criteria have been proposed for model selection
of Tucker or CP based decompositions of tensors [13, 14, 15, 16,
17]. Some require calculations using both the current models and
“gradually augmented models” [16]. Others use criteria for post-hoc
analysis between many models of different arrangements and ranks.
Mørup and Hansen [17] propose a Bayesian approach to shrink a CP
or Tucker model large enough to include any desired ranks; conse-
quently, their approach avoids computing many models.
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Here we need a straightforward criterion that uses only the ap-
proximation error or each model and number of parameters as input
[23]. Initial investigation showed that Akaike Information Criterion
(AIC) provides an adequate measure but tends to choose complex
models. Here we used the Bayesian Information Criterion (BIC)
[24]. Assuming i.i.d. zero-mean Gaussian distributed errors, the
model selection problem is to minimize BIC

argmin
X̂

BIC(X̂ ) = 2M ln
(

D(X‖X̂ )
)

+ L ln(M) + C (6)

where X has M elements, L is the number of free parameters in X̂ ,
and C is a constant that is independent of X̂ .

This criterion can be used to chose the model structure for the
general outer product decomposition, as it allows different models
with different number of parameters to be explored. For homoge-
neous models where all factors have the same size, it is straight-
forward to select the rank and arrangement that optimizes a model
selection criterion. For heterogenous models, it is computationally
prohibitive to solve (5) across all of the combinations of different
model structures and then pick the best one based on a criterion.
One alternative is a greedy approach.

Furthermore, in homogenous models, the number of parameters
is proportional to the number of component tenors, but this is not
the case in heterogenous models where a large number of low-rank
component tenors may provide a more parsimonious fit than a few
high-rank components. To handle this we propose a selection crite-
rion for the iterative approach that approximates BIC.

2.5. Greedy Selection Algorithm

A greedy approach is based on the observation that the approxi-
mation problem (5) and the model selection criterion are related
to sparse coding of vectors in that the error term is equivalent
‖vec(X ) − vec(X̂ )‖2 = ‖X − X̂‖F . Additionally, the model
selection criterion can be related to the l0 cost of sparse coding by
incorporating a penalty for adding components that correspond to
a large number of parameters. Thus, we propose using an iterative
algorithm for sparse coding which chooses vectors from a union of
dictionaries—morphological component analysis (MCA) [19, 20]—
as an approach to solve the model selection of the heterogeneous
product decomposition. We consider MCA with a hard threshold
selection criterion and an adaptive threshold value to selectively add
groups of components into the model [20]. A parsimonious model
is built by selectively adding a weighted combination of tensor
components each formed from factors along different modes of the
tensor. This allows the model to exploit any multilinear structure in
approximating the tensor.

Consider the case where the decomposition uses P groups of
different sized factors. Within a group all component tensors are re-
stricted to be orthogonal such that each group of components form a
set of data-dependent orthonormal tensors. Let Lp denote the num-
ber of parameters associated with adding a single component to the
model from the pth group.

Initially, the components for the pth group are estimated by an
applicable algorithm from the original tensor X to independently
minimize (5). On each iteration of the selection algorithm, a criterion
is used to select which components are added. After every selection
step, a new set of components are estimated for each group based on
approximating the new residual tensor.

Let Rt = X − X̂ t denote the residual after t iterations,
R0 = X . For each group p = 1, . . . , P , compute the inner

product between each component in the group r ∈ Gp and the
residual sr = 〈Rt,Cr〉F . Vector selection in MCA only considers
the magnitude of this inner product, but for model selection based
on (2.5) we use the term σr = 2M ln(|sr|) − Lp ln(M), since
− ln(|sr|) ∝ ln(D(Rt‖Cr)) . At each iteration if σr is larger than
λt then sr,A

1
r, . . . ,A

Nr
r will be added to the basis of the model

and X̂ t updated by

X̂ t+1 = X̂ t +
∑

{r:σr>λt}

sr

(

A
1
r ◦ · · · ◦A

Nr
r

)

. (7)

After each iteration {A1
r, . . . ,A

Nr
r }r are estimated from

Rt+1. Because the components are estimated from the residual,
the components added between two different iterations are nearly
orthogonal even though they are not necessarily of the same ar-
rangement. Generally, the iterative approaches cannot find true
tensor rank, because the space of tensors with a certain canonical
rank is not closed with respect to addition [25].

The choice of the threshold λt remains. As described by Bobin
et al. [20], the threshold should allow multiple components from the
same group to be added at once since they are orthogonal, but it
should avoid adding components from different groups since within
the same iteration they are not necessarily orthogonal. Let σ⋆ =
maxr σr and p⋆ be the group where σ⋆ is achieved; the value for the
next best group is σ◦ = maxr/∈Gp⋆

σr. By setting λt = 0.5(σ⋆ +

σ◦), a so-called mean of max approach [20], multiple components
may be added at once but only if they are from the same group.
Empirically this approach works well as seen in the next section.

3. SIMULATIONS

3.1. Synthetic Example

We test the proposed algorithm on a synthetic tensor. The tensor
X has size 512 × 16 × 32 and is formed as the sum of two com-
ponents and noise X = C1 + C2 + E =

∑8

r=1
A

1
r ◦ A

2
r +

∑12

r=1
A

3
r ◦ A

4
r + E where A

1
r,A

2
r,A

3
r,A

4
r,E have i.i.d. zero-

mean unit-variance Gaussian entries and sizes 512 × 16, 32 × 1,
512× 1, 16× 32, and 512× 16× 32, respectively.

C1,C2 are individually Tucker1 models aligned to two different
modes; whereas, C1+C2 (and the best approximation of X ) is a case
of the Kronecker tensor decomposition [10]. By unfolding the tensor
along a single mode the basis of one arrangement can be estimated,
and the same for the other arrangement; however, a large number
of components from a single unfolding are required to explain the
structure along the other mode of the tensor.

As shown in Fig. 1, the greedy algorithm iteratively builds the
model, and the model selection criterion identifies the correct num-
ber of components. Across 20 Monte Carlo runs, the mean and
standard deviation of the correlation coefficients between the es-
timated components Ĉ1, Ĉ2 and the true components C1,C2 were
(0.91, 0.01) and (0.87, 0.01), and (0.98, 0.01) between Ĉ1 + Ĉ2

and C1 + C2.

3.2. Face Images

To test the approach’s ability to succinctly describe data we use
AT&T Laboratories Cambridge database of faces commonly known
as ORL1. We use a a subset of the images and down-sample them to
56× 46 grayscale pixels with pixel values in the range [0, 255]. We

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Fig. 1. Model selection for a synthetic model when the underly-
ing model is a combination of components with two different mul-
tilinear arrangements. We compare two Tucker1 models, which use
truncated SVD along a single unfolding. Alternatively, the proposed
algorithm can iteratively select components from both unfoldings.
The markers indicate a single run, and the filled area indicates the
range across 20 Monte Carlo realizations of the random tensor. The
correct model was built on all 20 realizations and was selected as the
one that has minimizes the BIC .

use all the images (40 people, 10 photos per person) and form a 56×
46 × 400 tensor. We run the algorithm to select components from
a set of different block-term decompositions [6], see Fig. 2. The
orthogonality of the decomposition was empirically confirmed: the
maximum correlation coefficient between component tensors was
0.0585.
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greedy iteration

Fig. 2. Model selection for compression of the ORL face dataset
as a 56 × 46 × 400 tensor. Different permutations of block-term
decompositions [6] with different interior ranks are used. In each
decomposition, the factors corresponding to the rank-1 dimension
are orthogonal. At each iteration the algorithm greedily chooses one
or more components from one type of decomposition; the rank struc-
ture of the component added at each iteration is shown.

In terms of classifying the faces, the number of features is not
exactly equal to the number of tensor components used in the model,
but instead is equal to the sum of the ranks in the image index mode.
For instance, a combination of 10 rank-(4,1,4) and 5 rank-(4,4,1) ten-
sors components would correspond to 45 features in the pixel space.
The first two modes form the basis for the linear projection onto
the feature space. Using PCA as a preprocessor for face classifica-

tion vectorizes the first two modes [26, 27]; whereas, a heterogenous
model allows a combination of varying rank components across the
image plane [11].

We performed a very simple classification problem to compare
the performance of the heterogenous model to the use of PCA/SVD
to form eigenfaces as feature bases [26, 27]. For both approaches,
the features were only found once without the labels and using all
samples. 100 Monte Carlo divisions of the samples were performed
with 50% of the samples for training and the rest for testing. Sam-
ples in the test set were labeled by their nearest neighbor (using the
Euclidean metric) in the feature space. For the best number of fea-
tures, the average test performance was not different between using
SVD and the heterogenous model 92.24±1.65 and 91.59±2.04, re-
spectively. However, in terms of the number of coefficients in the
linear projection, the heterogenous model is far more parsimonious,
as in Fig. 3. This indicates that most of the eigenfaces are themselves
low-rank in image plane.
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Fig. 3. Classification based on features extracted via the greedy it-
erations in the heterogeneous model versus those of a single SVD.
The x-axis is the coefficients used in forming the linear projection to
the feature space.

4. CONCLUSION

We proposed a greedy algorithm for model selection of heteroge-
neous tensor decompositions. At each iteration the algorithm selects
one or more components from a single type of tensor decomposition
to be added to the model. Across iterations, the model may consist of
a mixture of decompositions. The flexibility in the synthesis model
yields parsimonious approximations, which do not require a priori
selection of the number of each type of component.

The approach can be extended with the tensor Kronecker
product [9] to build heterogeneous block-wise approximations
[10, 11, 12]. The iterative algorithm would replace the alternat-
ing least squares approach for the heterogenous case where the
ranks of each type of decomposition are chosen a priori. The model
selection criterion is useful in choosing a block size or combination
of block sizes.

Previous work on tensors decompositions [3, 8, 6, 10, 28] has
set the foundation for this approach. Our approach considers model
selection [13, 14, 15, 16, 17] but in the greedy orthogonal decom-
position proposed by Kolda [2]. To our knowledge this is the first
iterative algorithm to build a heterogeneous model.

The thresholding approach comes from the MCA algorithm [19,
20] for sparse coding of vectors with a union of dictionaries. Here we
have used data-dependent bases, which are estimated from the resid-
ual on every iteration, yielding a nearly orthogonal decomposition.
As signal processing is a called upon to process multiway signals,
there is the potential for more cross-fertilization between algorithms
for sparse vector representations and those for tensor analysis.
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S. Lehky, “From basis components to complex structural pat-
terns,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, May 2013.

[12] A.-H. Phan, A. Cichocki, P. Tichavský, G. Luta, and A. Brock-
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