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ABSTRACT

The operator-based signal separation approach uses an adap-
tive operator to separate a signal into additive subcomponents.
And different types of operator can depict different properties
of a signal. In this paper, we define a new kind of integral op-
erator which can be derived from the second kind of Fredholm
integral equation. Then, we analyze the properties of the pro-
posed integral operator and discuss its relation to the second
condition of Intrinsic Mode Function (IMF). To demonstrate
the robustness and efficacy of the proposed operator, we in-
corporate it into the Null Space Pursuit algorithm to separate
several multicomponent signals, including a real-life signal.

Index Terms— Integral equation, intrinsic mode func-
tion, operator based, Null Space Pursuit (NSP)

1. INTRODUCTION

Recently, many approaches have been proposed to separate a
single-channel signal into a mixture of several additive coher-
ent subcomponents [1, 2, 3,4, 5, 6]. The methods used to sep-
arate signals vary because the definitions of subcomponents
are different. For example, the subcomponent used in the em-
pirical mode decomposition (EMD) approach [2] is defined
as Intrinsic Mode Function (IMF); in the Synchrosqueezed
wavelet transform [5, 6], the subcomponent is called the in-
trinsic mode type function (IMT); and in the operator-based
approach [3, 4], each extracted subcomponent is defined as in
the null space of the proposed operators.

In the EMD approach, a function f(¢) is defined to be an
IMEF, if it satisfies two conditions [2]: (1) f(¢) has exactly one
zero-cross point between any two consecutive local extrema;
and (2) the local mean of the f(¢) should be zero. For the first
condition, Sharpley and Vatchev [7] have proved that it equals
to the condition that the IMF is a solution of the self-adjoint
ODE with the form

(P +Qf =0, (M
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where P and () are positive continuously differentiable func-
tions. In the operator-based approach [3], the differential op-
erator with a similar form as in Eq. (1) has been used to ex-
tract local narrow band signals. Although the differential op-
erator can characterize the oscillatory property of the signal,
it cannot keep the signal’s symmetric property well. Further-
more, the differential operator is not robust when the signal is
contaminated by noise. The second condition of IMF is used
to describe the symmetry of signal [8]. But its explicit defi-
nition is still under the veil because the ‘local mean’ is hard
to define accurately. Also, the integral operator, which might
similar to the IMF’s second condition, has not been assigned
an explicit form. The integral operator used in [3] is a simple
local mean as 7 (S)(t) = fo S(x)dx, where By is the inte-
gral interval which is derived by interpolating from the local
extrema of the signal. This kind of operator is not sufficient
to annihilate a great number of narrow band signals.

In this paper, we propose a new generalized integral oper-
ator with the form

T(S)(t) = K(z,t)S(z)dx

Bt

2

where K (z,t) is the parameterized integral kernel function
and B, is the integral interval at time ¢. More specifically, we
give an explicit form of the kernel function K (z, t) such that,
if we choose a correct integral interval By, local narrow band
signals can be annihilated by this kind of integral operator.
To analyze the properties of the proposed kernel function, we
compare it with the differential operator used in [4]. Then,
based on the null space pursuit (NSP) algorithm, we imple-
ment our adaptive signal separation algorithm using the pro-
posed integral operator. We demonstrate the robustness and
efficacy of our proposed algorithm for the noisy and real-life
signals in the experimental part.

2. NULL SPACE PURSUIT (NSP) ALGORITHM
The operator-based signal separation approach separates a

signal .S into U and R such that U = S — R is in the null
space of an operator 7 [3]. The objective of signal separa-
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tion in the operator-based approach is to solve the following
optimization problem:

R=argmin {|T(S - R) + \[DR)}. ()

where R is the residual signal, and D is a differential operator
that regulates R. Minimizing the term ||7(S — R)||? indi-
cates that S — R is in the null space of the operator 7. The
main difficulty in applying the operator-based approach to a
real-life signal is to determine the correct value of A, since
different A values can result in different separation results.

To solve the above problem, the NSP algorithm was pro-
posed [4]. The algorithm minimizes the following problem to
estimate the signal R:

R= argml%n{HT(S — R[>+ (| RI?
IS =R +F(M}. @&

The first and the second terms of Eq. (4) correspond to the
corresponding terms in Eq. (3). The leakage parameter ~y in
the third term of Eq. (4) determines the amount of S — U to
be retained in the null space of 7; and the last term F'(7) is a
Lagrange term for regularizing the parameters of the operator
T. When the leakage parameter + is set to zero, Eq. (4) is
reduced to Eq. (3). More important, the parameters A and y
can be adaptively estimated in the NSP algorithm [4].

3. INTEGRAL OPERATORS FOR SIGNAL
SEPARATION

3.1. Integral Operator and its Properties
In the NSP algorithm [4], the differential operator

Tp = d?/dt* + @*(t) 5)

is used to extract the local narrow band signals, where w ()
denotes the instantaneous frequency (IF) of the signal. This
kind of operator, however, cannot keep the signal’s symme-
try well because of its small support domain. For instance,
consider an input signal as S(t) = S (t) + S2(t) with Sy (¢)
is a frequency modulated (FM) signal and S»(t) is a piece-
wise smooth signal, which are shown in Fig. 1(a), (b) and
(c), respectively. Since in the most part of Sy (), we have
d%S5(t)/dt? = 0, the operator in Eq. (5) will not only
annihilate the subcomponent Sy (), but also greatly reduce
the energy of subcomponent Sy(¢). Thus, in this example,
the NSP algorithm cannot extract the desired subcomponent
Si (t) from S(t) because we have TpS(t) ~ 0.

To overcome the drawbacks of the differential operator,
the IMF’s second condition which is similar to an integral
operation comes into our mind. To define an integral oper-
ator that can annihilate a specific kind of signal, we need to
find the integral equation that the signal satisfied. Fortunately,
the differential equation d>S(t)/dt* + w?(t)S(t) = 0 with
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Fig. 1. An example of separating a two component signal. (a,
b, and c) the input signal and its two subcomponent, respec-
tively; (d) the extracted subcomponent derived by the NSP
[4]; (e) the extracted signal by the proposed algorithm.

boundary values S(a) = ¢; and S(b) = co can be trans-
formed to the type-II Fredholm integral equation [9]:

b
S(t) = / K(z,)S(z)dz + C(1), ©)

where C(t) = (cz — ¢1)t/(b — a) + ¢1, and K (x,t) is the
kernel function with the form:

[ A-(z—-a)/(b-a)tw?(x), a<z<t
K(‘T’t)_{ (1—(t—a)/(b—a)) vw2(z), t<z<b
(7)

Then, considering a signal S(t), we define the integral opera-
tor 77 according to Eq. (6) as

Ti(S)(t) = K(z,t)S(z)dx + C(t) — S(t), (8)
By
where B, is the integral interval.

Although the integral operator in Eq. (8) comes from the
differential operator in Eq. (5), their capabilities are quite
different. As in Eq. (8), for each point 7, if we choose its
neighborhood B, = [74, 7] with S(7,) = S(1) = S(7),
we can have 77(S)(7) = [ K(x,7)S(x)dx = 0, which re-
flects the symmetry condition of the input signal. For exam-
ple, for an FM signal S(¢) = cos(¢(t)) with ¢'(t) > 0, 7, and
Ty can be chosen as ¢! (¢(7) — 27) and ¢~ (&(7) + 27),
respectively. As shown in Fig. 1(e), the extracted subcom-
ponent is derived by the proposed integral operator defined
in Eq. (8). Furthermore, the integral operator is more robust
than the differential operator for extracting signals under the
noises, which can be seen in the experimental part.

3.2. Integral Operator based Signal Separation

Since the integral operator depends much on the boundary
values, the most important drawback of the integral operator



Algorithm 1 NSP Algorithm using Integral Operator
1: Input signal s, choose a stopping threshold € and the val-
ues of A% and ~°.
2 Setj « 0,f; + 0, M < A% and 77 < A°.

3: repeat

4: Estimate the parameters o (t) according to Eq. (13)
and compute the integral interval B;.

5: Compute M1 according to Eq.  (14) using
MM, 47, T;).

6: Compute #;1 according to Eq. (12) using 77, ’i‘j,
and AT

7: Compute 77 +1 according to Eq. (15) using #,.41 and
setj =7+ 1.

8: until ||f‘j+1 — f'j“2 <€

9: return Extract mono-component & = (1 4+ ~7)(s — #;)
and the residual signal £ = s — .

is to choose a suitable neighborhood, especially when the in-
put signal is a multicomponent signal. In our implementation,
we choose an approximate neighborhood B; according to the
estimated IF ¢ (t) at ¢; and then, we eliminate the boundary
effects by putting the boundary values into the optimization
process.

For each point ¢, the value of B; = [a, b] is computed by
a=t—1/w(t)and b =t + 1/w(t). Then, the integral oper-
ator defined in Eq. (8) is modified into the following form:

b
TS0 = [ Ut + K@) @) ©)

with J(z,t) = 0(z—a)—6(z—t)+=26(z—a) Wip—a) — T)
where () is the Dirac function with §(¢t) = 1if ¢ = 0 and
otherwise §(t) = 0, Wa, denotes the shift operator with
Wai(S)(t) = S(t + At) and Z is the identity operator; and
K (z,t) is defined in Eq. (7). For a given signal S(t), we can
use the NSP algorithm to search for R(t) by minimizing the
equation:

T
FR) =Y TS = R)I>+A(IRI*+ 7S - RI?) ,

(10)
where 7 denotes the integral operator 7 at time 7.

In discrete representation, we use bold upper case, e.g. A,
to represent matrices and bold lower case, e.g. a, to represent
vectors. Then, signals S(t) and R(t) can be represented as s
and r, respectively. The integral operator 7, and the second
order differential operator Dy can be represented as T, and
D, respectively. Then, Eq. (10) can be rewritten as

T
Fr) =D IT-(s =)l + A (el +~lls — ). A1)
T=1

To optimize the problem in Eq. (11) is quite simple since all
the terms are in quadratic form. Therefore, by taking simple
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Fig. 2. (a and b) A two-component AM-FM signal s(t) =
s1(t) + s2(t) + noise and its Fourier spectrum, respectively.
Note that the frequency has been normalized from 0 to 0.5.
(c and d) the clean subcomponent signal s1(t) = 0.5(2 +
cos(0.57t)) cos(20mt 4+ 16 sin(0.57t)) and sa(t) = 0.5(2 +
sin(0.57t)) cos(10mt + 12 sin(0.57t)), respectively.

calculations, I can be estimated by
-1

T T
= (Z T, T, + (1+ 7))\I> (Z T/ T,s+ Ms) )

=1 =1
(12)
where the prime denotes the transposition of matrix and vec-
tor. We use the approach in [10, 11] to estimate the IF ()
as

&% = — (ATA+\DID,)  ATDy(s— 1),  (13)

where A is the diagonal matrix whose diagonal elements

equal to (s — @). And following the settings of NSP algo-

rithm [4], the parameters A and -y in Eq. (11) can be estimated

via

1 sM(\,%,T)'s
L+4sM(\, 5, T)YM(), 4, T)s’

where T = Y7 T (&)'T, (&) and M(\, 5, T) = (T +
(1+4)MI)~1; and

>

(14)

-1 15)

respectively.

Based on equations from (12) to (15), we summarize our
integral operator-based signal separation procedure in Algo-
rithm 1. This algorithm can be executed M times iteratively

to separate a multi-component signal into a sum of M mono-
M

component signals as s = Y u; + r, where r denotes the
i=1

residual signal.

4. EXPERIMENTS AND DISCUSSIONS

In this section, we compare the results of using different sig-
nal separation algorithms in experiments on both simulated
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Fig. 3. (aand b) the first and second extracted subcomponents
by our proposed algorithm; (c and d) the first and second ex-
tracted subcomponents by the SWT [13]; (e to h) the four
extracted subcomponents by the EEMD algorithm [12] using
the standard variance of real noise.

and real-life signals. In the Simulated Signal experiment, we
test the robustness of our proposed algorithm for separating a
two-component AM-FM signal under the noisy case. The in-
put signal and its two subcomponents are shown in Fig. 2(a),
(c), and (d), respectively. In this example, since the NSP algo-
rithm [4] can not separate the two signals well, we compare
the separation results of the Ensemble EMD (EEMD) [12]
and the Synchrosqueezed wavelet transform (SWT) based al-
gorithm [5, 13] in Fig. 3. The first and second row in Fig. 3
show the separation results derived by our algorithm and the
SWT based approach, respectively. We can find that both of
these two algorithms can extract the two subcomponents cor-
rectly. However, the amplitude of the signals extracted by our
approach is better than the SWT based approach. Fig. 3 from
(e) to (h) show the separation result derived by the EEMD al-
gorithm, from which we can find that EEMD is more like a
band-pass filter [14, 15].

In the Real Example, we study the signal of Poland’s
daily electricity consumption from 1990 to 1994 [16]. Since
the separation results derived by the EEMD and NSP algo-
rithm can be found in [4, 16], we only show the results de-
rived by our algorithm. Fig. 4(a) and (b) show the input sig-
nal and the logarithm of its Fourier spectrum, respectively.
Fig. 4(c) to (g) show the first four extracted subcomponents
and the residual signal derived by our proposed algorithm.
In the extracted subcomponents, each oscillatory subcompo-
nent contains an individual main frequency, which is in ac-
cordance with the Fourier spectrum as shown in Fig. 4(b).
The first, second, and third extracted subcomponents relate,
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Fig. 4. (a and b) The input signal and its logarithm Fourier
spectrum. (c to g) the four extracted subcomponent and the
residual signal derived by our proposed algorithm. Noted that,
in (b), the frequency has been normalized from 0 to 0.5.

respectively, to a one-week, one-year, and a half-week cycle,
which might correlate with people’s working patterns. Note
that, the NSP algorithm can not extract the subcomponent
with the highest frequency [4].

The appealing feature of the operator-based approach is
that the operators can be devised according to the signals,
since the different kinds of operator can depict different prop-
erties of the signal. In this paper, we propose a new kind of
integral operator with an explicit form. Then, we compare the
similarity between the integral operator and the second con-
dition of IMF. With the help of Null Space Pursuit algorithm,
we implement our proposed operator to separate multicompo-
nent signals. The results of experiments on several simulated
and real-life signals demonstrate the efficacy and robustness
of the proposed operator for separating multicomponent local
narrow band signals.

5. RELATION TO PRIOR WORK

The work presented here has focused on the operator-based
adaptive single-channel signal separation algorithm using in-
tegral operators. The work by Peng and Hwang [3, 4] consid-
ers only differential operators for signal separation. Unlike
some time-frequency domain approaches [1, 17], the present
study is totally in the time domain and is related to some re-
cent empirical-like approaches [2, 14, 5, 6]. It also analyzes
some properties of the new proposed operator and its relation
to the IMF’s conditions [7, 8, 15], which were not discussed
in these earlier studies.
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