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ABSTRACT

In recent years there has been a surge in the demand for analy-
sis tools for multivariate point process data driven by work in
neural coding and high frequency finance. In both these areas
data volumes have become huge but few dimension reduction
methods have been developed. Here we introduce a reduced
rank model for the multivariate point process and provide
a maximum likelihood estimator which we compute by an
NMF type algorithm. However, the dependence on the point
process history in the model implies our algorithm does not
fit the traditional framework. The method is illustrated with a
simulation and some data from cortical recordings from cats.

Index Terms— Point process, stochastic intensity, re-
duced rank, NMF, maximum likelihood

1. INTRODUCTION

The availability of high-dimensional multichannel spike
recordings in neuroscience [1, 2] and more recently tick-
level data in stochastic finance [3] have led to a surge in
demand for analysis tools for multivariate point processes.

The breakthrough in point process theory with the devel-
opment of stochastic intensity [4, 5] in the late 1960s led to
considerable development of dynamic point process models
[6, 7] with applications in the recent neural coding literature
(see e.g. [8, 9] and references therein). But these methods do
not address the curse of dimensionality problem and become
unwieldy for high-dimensional point processes.

This is traditionally overcome by dimension reduction
strategies such as principal components analysis (PCA)
[10, 11] but until recently [12] there was no true PCA for
multivariate point processes; one which did not temporally
bin the point process which loses temporal information [2].

An important technique for dimension reduction in the
time series literature is the reduced rank regression discussed
in [13] which imposes a rank restriction on the matrices. A
point process analog can be constructed for the mutually ex-
citing or multivariate Hawkes process [14] which additionally
imposes non-negativity constraints on the matrices.

Recently, popularized by [15, 16], a suite of algorithms
have been proposed for non-negative matrix factorization

(NMF) which have found immediate appeal in a number of
application areas e.g. [17, 18, 19]. In the traditional NMF
framework there is no notion of a dynamic model so the fit-
ting algorithm under non-negativity constraints for the point
process system which depends on the point process history
cannot be cast in the traditional framework. Here we derive
a NMF-type algorithm for the dynamic point process model
for the first time. The relation between our algorithm and
other models for NMF in the literature is further elucidated in
section 3.

Relation to Prior Work: We make some comments on the
relation between this paper and [12, 20]. [12] introduced a
principled approach to dimension reduction for multivariate
point processes via a PCA model as well as dynamic index
model (DIM). Positivity of the stochastic intensity was en-
sured by developing models for the log-stochastic intensity.
However, there is no history dependence in the PCA mod-
els of [12, 20] and the DIM in [12] was introduced in the
log-stochastic intensity model which has been found to be
sensitive to variations in starting values for the iterative op-
timization and furthermore difficult to interpret. Here how-
ever we propose a Hawkes-Laguerre reduced rank (HL-RR)
model which depends on the point process history and the
factorization into non-negative basis and components matri-
ces provides a natural interpretation.

In the remainder of the paper we introduce the HL-RR
model in section 2. We develop a steepest descent algorithm
(section 3) via a cyclic descent procedure for maximum like-
lihood. The algorithm is demonstrated on a simple simulation
example (section 4.1) and then tested on neuronal recordings
in cat primary visual cortex (section 4.2). The paper con-
cludes with some final remarks in section 5.

2. HAWKES-LAGUERRE REDUCED RANK MODEL

We observe a d-dimensional multivariate point process Nτ

consisting of counting processes Nk,τ , k = 1, · · · , d. Here
Nk,τ = # events of the k-th process up to time and including
τ . Assuming No-Simultaneity [12] or orderliness [5] (i.e. in
a small time interval only one event of any type can occur) we
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can define the vector stochastic intensity,

µk,τ= P (Nk,τ+δ−Nk,τ = 1|Hτ )= µk,τδ+o(δ), k= 1, ..., d

where Hτ denotes the past of the vector process Ns, 0 < s ≤
τ . This is often written informally as µτdτ = E(dNτ |Hτ ).

Then Jacod’s multivariate log-likelihood [5] is given by,

L = Σd
1

∫ T

0

(lnµk,τdNk,τ − µk,τdτ)

In our previous work [12, 20] we introduced the canonical
parameter θk,τ = lnµk,τ so that the log-likelihood is revealed
as a member of the exponential family and obtained dimen-
sion reduction in the canonical parameter. Here we construct
a Hawkes-Laguerre reduced rank (HL-RR) model but for the
stochastic intensity.

µτ = µ̄+

∫ τ

0

H(u)dNτ−u

= µ̄+

∫ τ

0

Fd×qGq×d(u)dNτ−u

= µ̄+ F

∫ τ

0

G(u)dNτ−u

where µ̄ = (µ̄1, . . . , µ̄d)
T is the d-vector of unknown back-

ground firing rates and we have d > q. We now expand G(u)
in Laguerre polynomials. This is a causal basis and helps pre-
serve positivity.

G(u) = Σp
1Gl(uβ)

l−1e−βu

where 1
β is a user chosen time constant. The entries of the

q×dmatricesGl = [gc,j;l] for l = 1, ..., pwill need to be non-
negative. We also denote F = [fk,c] and require fk,c > 0.
Continuing∫ τ

0

G(u)dNτ−u = Σp
1Gl

∫ τ

0

(uβ)l−1e−βudNτ−u

= Σp
1Glψτ ;l

Note that ψτ ;l can be precomputed and so can be assumed
known. We thus have

µτ = µ̄+ FΣp
1Glψτ ;l

≡ µk,τ = µ̄k +Σp
1f

T
k Glψτ ;l

= µ̄k +Σp
l=1Σ

q
c=1Σ

d
j=1fk,cgc,j;lψj;τ ;l (1)

Remark: The model depends on the product FGl. There is
a potential identifiability issue since FGl = FMM−1Gl

where M is a scaled permutation [21]. To remove this lack
of identifiability we must place constraints on F,Gl but then
the non-negativity of F,Gl is not preserved. In the traditional
non-negative matrix factorization (NMF) algorithm [15] the
scaling ambiguity is dealt with by normalizing the columns
of F but this is not the case here.
Notwithstanding the identifiability issue, there has been a
growing interest in NMF which provides physical interpreta-
tion of latent structure [15, 19, 17]. Here we expect to gain
similar insight.

3. MAXIMUM LIKELIHOOD VIA CYCLIC
DESCENT

We develop an NMF-type algorithm for the point process HL-
RR model. However our algorithm does not fit in the tradi-
tional NMF framework. Firstly (1) does not give an NMF type
decomposition of the mean since it depends on the point pro-
cess history. Further, the unknown parameters are not two ma-
trices as in traditional NMF but rather p+1 matrices, namely
F and G1, · · · , Gp. Even if p = 1 we still do not have a tra-
ditional setup because of the presence of the data dependent
ψj;τ ;l terms in (1).

We also note that again the presence of the data dependent
factors ψj;τ ;l means that our model is not the same as the
convolutive model [22, 23, 24]. Finally our model is not the
same as the non-negative PARFAC model [25, 26, 27] again
because of the presence of the known data dependent term
ψj;τ ;l.

Nevertheless we are able to derive an NMF-type algo-
rithm in section 3.1.

It is known [28] that the traditional Kullback-Liebler type
updates form in fact an expectation-maximization (EM) algo-
rithm for a Poison type model. It would be of interest to see
if such an interpretation is possible for the algorithm we now
develop; this will be pursued elsewhere.

We partition the interval 0 < τ ≤ T into tiny bins of
width δ so thatNδ

kτ = Nk,τ+δ−Nk,τ is 0 or 1 with very high
probability. Let T = nδ and τ = tδ, t = 1, .., n, then

L ∼ Σd
1Σ

n
1 [N

δ
ktlnµk,t − µk,tδ]

⇒ −1

δ
L ∼ Σd

1Σ
n
1 [−Yktlnµk,t + µk,t] (2)

where Ykt = 1
δN

δ
kt.

In section 3.1 by an abuse of notation we use ψj;t;l instead
of ψj;tδ;l and write G1,p to mean G1, ..., Gp.

3.1. Multiplicative Updates

We use the following Majorization-Minimization (MM) up-
date result from [16]. Consider the negative log-likelihood
(2),

J = Σi[−Yilnµi + µi]

where µi = µ̄i +ΣmWimθm and θm ≥ 0,Wim ≥ 0, Yi ≥ 0.

Then [16] J is decreased by the multiplicative update

θ(1)m =
θ
(0)
m

ΣiWim
ΣiWim

Yi

µ
(0)
i

, µ
(0)
i = µ̄i +ΣmWimθ

(0)
m

The trick in using this result is to realize that we can take i
and m to be multi-indices.

We can modify J by adding terms that depend only on Yi.
Thus minimizing J is equivalent to minimizing

D = ΣiDi = Σi[Yiln
Yi
µi

− Yi + µi]
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The inequality xlnx − x + 1 ≥ 0 rapidly delivers Di ≥ 0
(divide through by µi). Di is the Kullback-Liebler distance
between Yi and µi. It is D that [16] deals with but the equiv-
alence to likelihood is well known.

Now we pursue a three stage cyclic descent minimization
[29],

F -step: Given G1,p, µ̄ get F ∗ = arg.minF :fk,c≥0,

FT 1=1

D

G-step: Given F, µ̄ get G∗
l = arg.minGl:gc,j;l≥0D

µ̄-step: Given F,G1,p get µ̄∗ = arg.minµ̄:µ̄≥0D

The F,G, µ̄ steps of the cyclic descent minimization are con-
strained optimizations placing non-negativity constraints on
the entries. We have found that the multiplicative MM algo-
rithm provides a reliable approach to this cyclic ascent.

F -step. The criterion is separable in k so we can take k fixed.
If we identify m ≡ c and i ≡ t then we have the equivalences

µi ≡ µk,t, µ̄i ≡ µ̄k,t = µ̄k, and Yi ≡ Ykt

θm ≡ fk,c

and then

µk,t = µ̄k +Σc,j,lfk,cgc,j;lψj;t;l

= µ̄k +ΣcW
f
tcfk,c

W f
tc = Σj,lgc,j;lψj;t;l

This delivers the updates for k = 1, · · · d

f
(1)
k,c =

f
(0)
k,c

ΣtW
f
tc + λc

ΣtW
f
tc

Ykt

µ
(0)
k,t

µ
(0)
k,t = µ̄

(0)
k +ΣcW

f
tcf

(0)
k,c

W f
tc = Σj,lg

(0)
c,j;lψj;t;l

where λc is the Lagrange multiplier due to the constraint
Σkfk,c = 1.

G-step. Here we identify

i ≡ (k, t) and m ≡ (c, j, l)

Then we have

Yi ≡ Ykt, µi ≡ µk,t and µ̄i ≡ µ̄k,t = µ̄k

θm ≡ gc,j;l

and then

µk,t = µ̄k +Σc,j,lgc,j;lfk,cψj;t;l

= µ̄k +Σc,j,lW
g
ktcjlgc,j;l

W g
ktcjl = fk,cψj;t;l

This delivers the update

g
(1)
c,j;l =

g
(0)
c,j;l

ΣktW
g
ktcjl

ΣktW
g
ktcjl

Ykt

µ
(0)
k,t

µ
(0)
k,t = µ̄

(0)
k +Σc,j,lg

(0)
c,j;lf

(1)
k,cψj;t;l

W g
ktcjl = f

(1)
k,cψj;t;l

µ̄-step. The steepest descent in the µ̄-step is similar to the
F -step in that the criterion is separable in k so we can take k
fixed. We rapidly find the updates for k = 1, ..., d

µ̄
(1)
k =

µ̄
(0)
k

n
Σt

Ykt

µ
(0)
k,t

µ
(0)
k,t = µ̄

(0)
k +Σc,j,lf

(1)
k,c g

(1)
c,j;lψj;τ ;l

Note that wherever in the sums Ykt = 0 then the correspond-
ing term is omitted from the sum.

4. SIMULATION AND DATA ANALYSIS

A simulation example is first provided to demonstrate the al-
gorithm. Then, data analysis of multichannel recordings from
cortical neurons in cats is presented.

4.1. Simulation Example

A d = 5-dimensional Hawkes process [14] is considered. The
simulation setup is discussed first. We consider the simple
case with p = 1, q = 2 and generate matrices F,G1 whose
entries are non-negative. The background firing rate µ̄k, k =
1, ..., d∼ U(4, 5) and the time constant 1

β = 2
3 s is taken. The

multivariate Hawkes process is simulated in 0 < τ ≤ T with
T = 10 s by extending the algorithm for the bivariate case
[30] based on the thinning procedure [31]. About 70 counts
per channel were recorded and at the resolution of δ = 0.1 ms
the No-Simultaneity condition [12] was ensured.

Fig. 1(a),(b) show the components G1ψτ ;1 and the rows
of FT respectively. Looking at the individual weights in the
first row we see that channel 2 gets a weighting of about 0.5
and channel 3 gets a weighting of about 0.3. Thus the first
component is roughly a weighted average over these chan-
nels. For the second row we find roughly a weighted average
of channels 1, 4, 5.

We use the Akaike Information Criterion (AIC) for model
comparison, computed using the likelihood since it only
needs µτ . As shown in Fig. 1(c), the minimizer of the AIC is
the true value of q = 2.

For the cyclic descent minimization, the initial estimates
of F,G1 were randomly generated with non-negative entries.
The Kullback-Leibler (KL) divergence measure ΣiDi(Yi||µi)
for the true parameter values and the iterates computed using
the parameter estimates are shown in Fig. 1(d). We observe
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that the iterates converge after about 40 iterations to a smaller
value than the true one. We do not show iterates of individ-
ual F,G1 parameters. Even for a problem of small dimen-
sion such a plot is dense and difficult to interpret. Instead
we show lower dimensional summary measures; namely col-
umn cosines which are the angles between a true column and
the corresponding estimate of it. Fig. 1(e) shows the column
cosines diag(F̂TF ) of F where F̂ denotes the estimate of F .
Similarly, Fig. 1(f) shows the column cosines of (normalized)
GT

1 ; some bias is evident. Fig. 1(g),(h) show the components
for the estimate of GT

1 and the rows of F̂T respectively. No-
tice that the components as well as the rows of the F̂T are
interchanged. We have found that the results are reasonably
robust to variations in starting values for the iterative opti-
mization.

0 2 4 6 8 10

0
5

15
25

Time (s)

C
om

po
ne

nt
s

(a) Components

1 2 3 4 5

0.
1

0.
3

Channel

FT

row 1
row 2

(b) FT

1 2 3 4 5

−8
20

−8
00

q

A
IC

(c) AIC

0 20 40 60 80 100

23
.0

24
.0

Iteration

K
L

 d
iv

er
ge

nc
e 

(x
10

6 )

true
estimate

(d) KL Iterates

0 20 40 60 80 100

−1
.0

0.
0

1.
0

Iteration

F 
C

ol
um

n 
C

os
in

es

(e) F Column Cosines

0 20 40 60 80 100

−1
.0

0.
0

1.
0

Iteration

G
 C

ol
um

n 
C

os
in

es

(f) GT
1 Column Cosines

0 2 4 6 8 10

0
10

30
50

Time (s)

C
om

po
ne

nt
s

(g) Estimated Components

1 2 3 4 5

0.
0

0.
2

0.
4

Channel

FT

row 1
row 2

(h) Estimated FT

Fig. 1. Simulated Data: (a) Components G1ψ1t, (b) Rows
of FT , (c) Akaike Information Criterion (AIC) Values, (d)
Iterates of KL Divergence measure, (e) Iterates of F Column
Cosines, (f) Iterates of GT

1 Column Cosines, (g) Estimated
Components and (h) Estimated FT .

4.2. Neural Data

Extracellular neuronal recordings in the cat primary visual
cortex are analyzed. Up to 25 neurons (channels) were
recorded simultaneously for about 2.5 min from area 17
(trans-columnar down the medial bank) [32]. For illustration
purposes we present results for the analysis of spiking activity
for 4 s in d = 9 channels with about 100 spikes per channel.
The discretization step δ = 0.08 ms and 1

β = 0.5 s were
taken.

q = 2 was determined as the minimizer of the AIC shown
in Fig. 2(a). For q = 2, the iterates of the KL divergence are
shown in Fig. 2(b) which settle after about 70 iterations.

Fig. 2(c),(d) show the estimated components and basis
vectors respectively. We find that for the first row channel 6, 8
get a weighting of about 0.3, 0.25 respectively. Thus the first
component is roughly a weighted average over these chan-
nels. A weighted average of channels 2, 5, 7, 8 contributes to
the second row.
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Fig. 2. Neural Data: (a) Akaike Information Criterion (AIC)
Values, (b) Iterates of KL Divergence measure, (c) Estimated
Components and (d) Estimated Basis Vectors.

5. CONCLUSIONS

In this paper we have developed a multivariate point process
reduced rank (RR) model which we estimated by maximum
likelihood and fitted by a novel NMF type algorithm. The RR
model preserves positivity of the intensity by placing non-
negativity constraints on the matrices. The presence of a dy-
namic point process model implies that our fitting algorithm
is considerably different to existing NMF algorithms. The ap-
proach is illustrated with a simulation example and tested on
neural recordings.
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