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Abstract—In this paper, we propose a multi-stage indirect
learning architecture (ILA) for digital predistortion. Unlike the
conventional ILA, in multi-stage ILA the digital predistorter (PD)
is implemented in two or more stages. We demonstrate that
depending on the power amplifier (PA), multi-stage ILA can
achieve same or even better performance than the conventional
ILA but with significantly lower PD identification complexity. The
identification complexity is measured by computing the number
of multipliers needed for identification of PD. In addition to
above, we also propose two algorithms for the identification of
the multi-stage ILA coefficients. The performance of the multi-
stage ILA is evaluated in terms of improvement in adjacent
channel power ratio (ACPR) and error vector magnitude (EVM)
at the output of PA when a Long Term Evolution-Advanced
(LTE-Advanced) signal is applied at the input. The reference PA
models used for simulation are the Wiener model and Wiener-
Hammerstein model.

Index Terms—Digital predistortion, nonlinear distortion, indi-
rect learning architecture, high power amplifiers

I. INTRODUCTION

The PA is one of the most nonlinear components in the
radio frequency (RF) transceivers [1]. In order to achieve
higher efficiency, PAs are usually driven towards saturation
region, however this causes severe distortion on the transmitted
signal resulting in out-of-band distortion (spectral regrowth
beyond the signal bandwidth) and in-band distortion (Error
Vector Magnitude degradation). Moreover, with the advent
of multiple carrier transmissions such as 4 carrier-wideband
code division multiple access (4x-WCDMA) or Long Term
Evolution-Advanced (LTE-Advanced), with varying-envelope
waveforms and wide bandwidth the PA also tends to exhibit
memory effects [2]. These memory effects further deteriorate
the transmitted signals resulting in more out-of-band and in-
band distortions.

Over the years numerous authors have proposed many
linearization techniques to increase the efficiency and reduce
the distortions caused due to PA [1]. However owing to its
flexibility of implementation, high performance improvement
and cost-effectiveness, digital predistortion (DPD) stands out
as one of the most popular methods to linearize the PA [3].
Basically in DPD, a digital predistorter (PD) which has the

*The research leading to these results has received funding from the
European Seventh Framework Programme under grant agreement n° 230688.

inverse nonlinear characteristics of that of the PA, is added
in baseband. This way the cascaded digital predistorter-PA
system becomes linear and the PA can be driven more towards
the high efficiency saturation region without compromising
much on linearity.

One of the most studied approaches to realize a DPD
is the indirect learning architecture (ILA) [4]–[6]. In the
conventional ILA, a post-inverse of the PA is first identified
and then used as a PD. The post-inverse/PD is usually modeled
as a memory polynomial (MP) [7] model and identified using
the input and output of PA by applying simple least squares
(LS) method [5]. The nonlinearity order and memory depth of
the memory polynomial PD depends upon the PA nonlinearity
to be compensated and varies with the PA. Usually there is a
trade-off between the complexity of the MP and the nonlinear
distortions that can be tolerated. Using a higher order and large
memory depth MP model might improve the performance
of PD and reduce nonlinear distortions at the output of
PA however it will increase the computational complexity
substantially [8], [9]. Moreover, there is always a limitation
on the maximum performance that can be achieved by this
conventional ILA-DPD approach. Once the ILA-DPD system
converges to the best possible solution1, there is no substantial
improvement in the performance with any subsequent increase
in nonlinearity order or memory depth [10].

In this paper, we propose a multi-stage ILA for digital
predistortion that has lower computational complexity (CC)
for the identification of PD parameters2. In this multi-stage
architecture, the nonlinearity of PA is compensated by imple-
menting PD in two or more stages. Each stage is modeled
by a lower order memory polynomial thus having a lower
identification complexity. Simulation results show that this
architecture can achieve same or even better performance then
the conventional single stage ILA. Moreover the identification
complexity of this multi-stage architecture is much lower than
the conventional architecture.

Apart from above, we also propose two different algorithms

1The best possible solution here refers to the identified MP model which
achieves the best improvement in the performance of ACPR and EVM at the
output of PA.

2In the following, the computational complexity always refer to the com-
plexity involved in parameters identification.
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Fig. 1. Indirect Learning Architecture - ILA.

to identify the PD of this multi-stage ILA. In the first algo-
rithm, the system level identification is done for each stage
and once this stage converges to the best possible solution
new stage is added to further improve the performance. For
the second algorithm, the system level identification of each
stage is done by taking all the stages into consideration. The
system is optimized to achieve the best possible solution by
simultaneously considering all the stages. We later show that
for equivalent number of stages both the algorithms obtain
approximately the same performance.

The performance of the proposed multi-stage ILA is eval-
uated in terms of adjacent channel power ratio (ACPR) and
error vector magnitude (EVM) improvements using an LTE-
Advanced signal. Two different PA models have been used:
Wiener model given in [11] and Wiener-Hammerstein model
given in [5]. The identification complexity for conventional as
well as multi-stage ILA is measured by computing the number
of multipliers needed.

The remainder of this paper is organized as follows. Section
II gives the theoretical background related to the conventional
ILA. Section III presents the proposed multi-stage ILA and
discusses the identification algorithms for multi-stage ILA.
In Section IV simulation results for conventional ILA and
proposed multi-stage ILA are presented and discussed. Finally
Section V concludes the paper. In the following, the vectors
and matrices are denoted by bold lowercase letters (eg. a) and
bold uppercase letters (eg. A) respectively. The superscripts
(.)∗, (.)T and (.)H denote the conjugate, the transpose and the
conjugate transpose, respectively.

II. CONVENTIONAL ILA

The PD identification in ILA is done in a single step as
shown in Fig. 1. A post-inverse of the PA is identified and
used as a PD. If the post-inverse is modeled as a MP, then its
output can be written as [6]

zp(n) =
∑
k∈K

∑
l∈L

cklΦkl[z(n)] (1)

where z(n) = y(n)
g is the input to the post-inverse block as

shown in Fig. 1, K is the index array for nonlinearity and L
is the index array for memory. ckl, k ∈ K and l ∈ L are the
complex coefficients and Φkl[z(n)] = z(n− l)|z(n− l)|k. The
total number of coefficients is J = ¯̄K ¯̄L with ¯̄X denoting the
cardinality (number of elements) of X .
After convergence, we should have zp(n) = x(n) and hence

TABLE I
COMPUTATIONAL COMPLEXITY

Step Number CC
Step 1 N(J + J2)
Step 2 J3

Step 3 J2

z(n) = u(n). As (1) is linear in the parameters ckl, we can
rewrite it using matrix notation [6]

zp = Zc (2)

where zp= [zp(1), . . . , zp(N)]
T , c is J × 1 vector containing

the set of coefficients ckl, Z is N×J matrix containing Φkl[z]
where z= [z(1), . . ., z(N)]

T and N is the total number of
samples. The least square solution of (2) will the solution of
the normal equation

ZHzp = ZHZĉ. (3)

The following briefly illustrates the steps in computation 3,of
ĉ.

• Step 1: Define a new compound matrix

[ZHZ|ZHzp] = QR = Q[U|w]. (4)

• Step 2: Compute the QR decomposition of the compound
matrix by Gram Schmidt process [12].

• Step 3: Substitute the result of Step 2 into Step 1 to obtain

w = Uĉ (5)

which could be solved using back substitution [13].
Table I summarizes roughly the CC needed in the computa-

tion4 of ĉ . The CC is measured by computing the number of
multiplication needed for each step. Hence, total CC needed
for computation of ĉ would be N(J + J2) + J3 + J2.
However, since ĉ and Z are complex, the total number of
real multiplication operations needed will be [12].

CC = 4(N(J + J2) + J3 + J2). (6)

In general, it is perceived that, as the number of terms of
an MP model increases, its correction capability increases,
although the amount of contribution might vary across the
terms [6] [9], i.e an MP model with larger J might perform
better than an MP model with smaller J . However, addition of
each new term increases the computational complexity of both
online as well as identification processing, and consequently
the implementation cost [14]. As a result, there is a significant
trade-off in the desired performance of the PD and the number
of terms that can be included in the PD. To achieve a better
performance we would like to have a larger J , however as
the number of multiplication operations required is directly
proportional to the square of J (6) it will substantially increase
the computational complexity needed for identification of PD.

3Note that in this paper we are not taking into consideration the complexity
involved in computing matrix Z.

4Note that here we have used Gram-Schmidt method to compute the com-
plexity by QR decomposition; other methods like Householder transformation
or Givens rotation can also be used.

6094



SM S2 S1

Fig. 2. Block diagram of a multi-stage (multi-box) nonlinear model.

III. MULTI-STAGE ILA

Before proceeding to give a comprehensive overview of
the proposed multi-stage ILA and the algorithms to identify
the PD for this multi-stage ILA, it is important to discuss a
multi-stage nonlinear model. A block diagram of a multi-stage
nonlinear model is shown in Fig. 2. This multi-stage structure
has been widely used for PA and PD modeling. In this
multi-stage structure one or more linear time invariant (LTI)
systems are cascaded with a static memoryless nonlinearity
[15]. The most used model belonging to this category is the
Wiener-Hammerstein (W-H) model, also called three-box
model, with cascaded linear(L)-nonlinear(N)-linear(L) (LNL)
operators [16], [17]. The Wiener (LN) and Hammerstein (NL)
models which are two particular cases of the W-H model,
has been also used [18], [19]. Different parameter estimation
algorithms have been proposed in literature to extract the
parameters of these model structures [16]. However, their
implementation complexity and their low correction capability
when compared to an MP model (1) limit their use as a PD.

We have tried to overcome the above drawback by gen-
eralizing the above multi-stage structure. We use an MP to
model each stage of the above multi-stage structure. Other
configurations like generalized MP (GMP) [6] or 2D-MSP
proposed in [9] can also be used to model each stage. The
proposed multi-stage model have the desirable property that
the output at each stage is linearly dependent on its coefficients
and hence LS algorithm can be used for parameter extraction
as shown in Section II.

A. Identification algorithms for the proposed multi-stage ILA-
DPD

One of the bottleneck in identifying a multi-stage system
comes from the fact that the internal signals interconnecting
the stages are inaccessible to measurements. In this paper, the
proposed identification algorithms rely on the idea of gradually
linearizing the PA, using an ILA. We start by identifying a
first stage which partially compensates the nonlinearity and/or
memory of the PA. Then we add a second stage to improve the
linearity or to compensate for the residual distortion of the new
system constituted by the cascade of the first stage and the PA,
then a third one to linearize the cascade of the second and first
stages with the PA, etc.. Thus, the nth stage is implemented
to improve the linearity of the cascade of the n−1 first stages
with the PA. The complexity of the identification algorithm,
which depends on the number of parameters, will substantially
decrease since only one stage is processed by iteration. In
the following, we present two identification algorithms for
multi-stage DPD implementation based on an indirect learning
architecture.

PA
x2(n)xn(n)u(n) y(n)x1(n)
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Fig. 3. Indirect learning architecture of a multi-stage DPD based on the first
algorithm.
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Fig. 4. Graphical illustration of algorithm 1 with three-stage DPD.

1) Algorithm 1: The most simple and straightforward iden-
tification approach is to identify stages from the closest to
the farthest to the PA. Once a stage is identified, it will
be considered as being part of a new system, the cascade
with the already identified stages and the PA. So, in the
identification of the current stage, Pi, only stages, Pi−1, ..., P1,
are used and their coefficients are kept constant until the
system-level convergence is reached [10]. The block diagram
of the ILA of the cascaded multi-stage DPD based on this
first algorithm is shown in Fig. 3. It is important to note that
for the identification of each stage more than one system level
iteration is needed [10]. So after system convergence of the
current stage, we can proceed with the identification of the next
one. Fig. 4 illustrates graphically the steps of this algorithm for
a three-stage DPD, where the dark boxes represent the stages
that are currently being identified. If we denote Ni the number
of iterations needed for stage Pi, the total number of iterations
for the whole system to converge is equal to

∑M
i=1 Ni, where

M is the total number of stages.
2) Algorithm 2: In the first algorithm, once Pi stage is

identified, for subsequent identification of new stage Pi+1,
it will be considered as being part of a newly constituted
system (stage Pi, Pi−1, ..., P1 PA) as shown in Fig. 4 and
its parameters wont be affected by the identification of stage
Pi+1. In order to have more interaction between stages, after
the insertion of a new stage we can re-identify the other stages.
This process may optimize the identification of all stages and
lead to more accurate results. The block diagram of the ILA
based on the second algorithm is shown in Fig. 5. In this
case, stage Pi is processed at the (Mk + i)th iteration, with
k = 0, 1, 2, 3, ... using stages PM , ..., Pi−1. The graphical
description in Fig. 6 aids in explaining the steps for the
identification of a three-stage DPD model using this algorithm.

IV. SIMULATION RESULTS

In this section, we present and discuss the simulation results
for the multi-stage ILA. For this purpose, we use two different
reference PA models, Wiener model as given in [11] and
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Fig. 6. Graphical illustration of algorithm 2 with three-stage DPD.

Wiener-Hammerstein model as given in [5].
The PA is driven by an LTE-Advanced signal with band-

width 10 MHz, sampling frequency 122.88 MHz and peak-
to-average power ration (PAPR) of approximately 11dB. The
number of input samples for each system level iteration
is 25000. As stated before, an MP model is used for the
extraction of parameters of PD for both conventional as well
as multi-stage ILA.

The simulation is done in two steps. In the 1st step,
conventional ILA is used as a DPD for a particular reference
PA. The nonlinearity order and memory depth of the MP are
varied till the conventional ILA DPD converges to the best
possible solution [10]. The computational complexity in terms
of number of multipliers is computed for the identified MP
model.

In the 2nd step, multi-stage ILA is used as DPD for the
same reference PA. The nonlinearity order and memory depth
of the MP for each stage are varied till the multi-stage ILA
DPD achieves the same performance (in terms of ACPR and
EVM at the output of the PA) as that with the best performing
conventional ILA5. The CC in terms of number of multipliers
is computed for the identified MP model of each stage. In
the following, the performance of multi-stage ILA has been
demonstrated by considering two-stage ILA, however it can
be easily extended to more number of stages.

Table II shows the results for a PA modeled as Wiener
Model. K and L are vectors containing k and l values as given
in (1). ACPRU and ACPRL denotes the power in adjacent
upper channel and lower channel with respect to main channel
respectively. The CC of two-stage ILA has been normalized
with respect to conventional ILA. As seen from Table II,
both two-stage and conventional ILA DPD are able to achieve
sufficient improvement in ACPR and EVM at the output of
the PA. However, the two-stage algorithms 1 and 2 are able to

5Note that the motivation here is to obtain same performance as that of
conventional ILA with less CC. The optimal performance that can be achieved
with multi-stage ILA can be higher than shown here.

TABLE II
WIENER MODEL

Parameters Without Two-stage ILA Two-stage ILA Conventional
DPD (Algorithm 1) (Algorithm 2) ILA

ACPRU(dBc) -50.24 -111.2 -110.2 -109.9
ACPRL(dBc) -48.26 -110.5 -110.6 -109.1
EVM(%) 17.95 0.0292 0.0291 0.0285

Index array for
Nonlinearity and
Memory

Stage 1: Stage 1:
K=[0 2 4 6], L=[0 2 4] K=[0 2 4 6], L=[0 2 4] K=[0 2 4 6 8 10]

NA Stage 2: Stage 2: L=[0 2 4 6 8 10]
K=[0 2 4 6 8], L= [0 2 4 6 8] K=[0 2 4 6 8], L= [0 2 4 6 8]

Number of
Coefficients

Stage 1: 12 Stage 1: 12
NA Stage 2: 25 Stage 2: 25 36

Normalized
Complexity

Stage 1: 0.1170 Stage 1: 0.1170
NA Stage 2: 0.4878 Stage 2: 0.4878 1

TABLE III
WIENER-HAMMERSTEIN MODEL

Parameters Without Two-stage ILA Two-stage ILA Conventional
DPD (Algorithm 1) (Algorithm 2) ILA

ACPRU(dBc) -44.79 -90.4 -89.8 -89.4
ACPRL(dBc) -45.41 -90 -89.7 -89.3
EVM(%) 20.05 0.0161 0.016 0.0316

Index array for
Nonlinearity and
Memory

Stage 1: Stage 1:
K=[0 2 4], L=[0 1 2 3] K=[0 2 4], L=[0 1 2 3] K=[0 1 2 3 4 5 6 7]

NA Stage 2: Stage 2: L=[0 1 2 4 6 7]
K=[0 2 4 5 6 7], L= [0 1 2 4 6] K=[0 2 4 5 6 7], L= [0 1 2 4 6]

Number of
Coefficients

Stage 1: 12 Stage 1: 12
NA Stage 2: 30 Stage 2: 30 48

Normalized
Complexity

Stage 1: 0.0662 Stage 1: 0.0662
NA Stage 2: 0.3951 Stage 2: 0.3951 1

achieve the same performance as best performing conventional
ILA with significantly lower CC. It can also be seen from
Table II that two-stage PD requires lower non linearity order
or memory depth and as a consequence the CC for two-
stage algorithms is approximately half of that needed with
conventional ILA.

Table III shows the results for a PA modeled as Wiener-
Hammerstein Model. The number of multipliers needed by
two-stage algorithms is less than half of that needed by
conventional ILA. Moreover with the two-stage algorithms,
EVM is reduced to half of that obtained by the best performing
conventional ILA. Memory depth has also been reduced by 1
for the case of two-stage ILA.

It is also worth noting from Table II and Table III that as
each stage have fewer coefficients in two-stage PD than in
the conventional PD, as a consequence the condition number
of the matrix ZHZ in (3) is reduced and thus the sensitivity
to noisy measurement is also reduced. Another point to
note is that both the two-stage algorithms, 1 and 2 achieve
approximately same ACPR and EVM performance for a given
number of stages and same number of coefficients for each
stage. This behavior might be due to the fact that both the
algorithms although inherently different are trying to reach
the same solution. Further investigation might be needed to
validate this hypothesis and will be the subject of future work.

V. CONCLUSION

A multi-stage indirect learning architecture (ILA) with low
identification complexity is proposed. In this multi-stage ILA,
PD is implemented in two or more stages. It was shown that
this multi-stage ILA was able to achieve same or even better
performance than the conventional ILA but with significantly
lower identification complexity. The performance of the multi-
stage ILA was evaluated by measuring the ACPR and EVM
at the output of the PA for an LTE-Advanced input signal.
The reference PA models used for simulation were the Wiener
model and Wiener-Hammerstein model.
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