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ABSTRACT

The independent vector analysis (IVA) algorithm can theo-

retically avoid the permutation problem in frequency domain

blind source separation by using a multivariate source prior

to retain the dependency between different frequency bins of

each source. In this paper, a new multivariate generalized

Gaussian distribution is adopted as the source prior which can

exploit fourth order inter-frequency correlation, and therefore

better preserve the dependency between different frequency

bins to achieve an improved separation performance as com-

pared with the original IVA algorithm. Separation perfor-

mances are compared by simulation studies when using dif-

ferent source priors, and the experimental results confirm that

IVA with the new source prior can consistently achieve im-

proved separation performance.

Index Terms— independent vector analysis, multivari-

ate generalized Gaussian distribution, fourth order inter-

frequency correlation

1. INTRODUCTION

Blind source separation (BSS) has been widely researched

in the signal processing research community, and focuses on

how to extract individual signals from observed mixed sig-

nals. It can be widely used in various application fields [1].

One of the most famous application is attempting to solve the

classical cocktail party problem, which was first described by

Colin Cherry in 1953 [2]. The target is to mimic in a machine

the ability of a human to separate one speaker from a mixture

of sounds.

Solving the machine cocktail party problem requires the

design of a method to focus on the desired speech signal while

suppressing or ignoring all the other competing speech sounds

[3]. In signal processing, independent component analysis

(ICA) is the central tool for solving this problem [4]. In

a real room environment, due to the reflections of the ceil-

ing, the floor and the walls, the problem becomes convolutive

blind source separation (CBSS) [5]. The time domain meth-

ods are generally not appropriate for solving the CBSS prob-

lem because of the computational complexity [1]. Then the

frequency domain methods are proposed to address the CBSS

problem [6]. However, the permutation ambiguity is inherent

to the BSS problem, and many methods have been proposed

to solve the problem by introducing the source position infor-

mation or the structure of the source signal [7].

Independent vector analysis (IVA) is a frequency domain

method to solve the convolutive blind source separation prob-

lem (CBSS), which can theoretically avoid the permutation

problem by exploiting certain statistical inter-dependency be-

tween frequency bins within each source vector, while remov-

ing the dependency between different sources [8]. The IVA

method adopts a dependent multivariate spherically symmet-

ric Laplace (SSL) distribution as the source prior, instead of a

univariate distribution used by traditional CBSS approaches.

However, the form of the multivariate source prior should

not always be fixed. Recently, selecting the most appropri-

ate multivariate source prior to improve the separation perfor-

mance has become a research focus.

In [9], a family of lp-norm-invariant sparse probability

density functions (pdf) is used as the source prior; then the

separation performance of maximum likelihood type indepen-

dent vector analysis (ML-IVA) algorithms is compared. The

experimental results indicate that the spherical symmetry pdf,

i.e. p=2, is suitable for modeling speech. The sparseness

parameter is also discussed, and it is claimed that the best

separation can be obtained when the sparseness parameter is

around 7.

In this paper, we adopt a new multivariate generalized

Gaussian distribution as the source prior, which also belongs

to the family of l2-norm-invariant sparse probability density

functions, and the sparseness parameter is chosen to be 3
2 .

This new source prior introduces fourth order terms between

different frequency bins for each source vector to construct a

stronger dependent structure and thereby improve the separa-

tion performance, as compared with the original IVA method

which chooses the spherically symmetric Laplace (SSL) dis-

tribution as the source prior. Moreover, the experimental

results show the separation performance when using the new

source prior can consistently achieve improved separation

performance. The IVA algorithm with the source prior whose
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sparseness parameter is around 7 is found not to be robust in

that it not always increases the separation performance.

The paper is organized as follows, in Section 2 the original

independent vector analysis algorithm is introduced. Then

IVA with the proposed source prior is described in Section 3,

and the advantage of the new source prior is also analyzed.

Experimental results are shown in Section 4, and the relation

to prior work is finally discussed in Section 5.

2. INDEPENDENT VECTOR ANALYSIS

In a real room environment, due to reverberation, there are

many paths between the microphones and the sources, which

is modelled as a convolutive case. In order to reduce the

computational cost of the time domain methods, separation of

such convolutive problems is generally approached in the fre-

quency domain. Thus, the noise free model in the frequency

domain is described as:

x(k) = H(k)s(k) (1)

ŝ(k) = W(k)x(k) (2)

where x(k) = [x
(k)
1 , . . . , x

(k)
m ]T , ŝ(k) = [ŝ

(k)
1 , . . . , ŝ

(k)
n ]T and

s(k) = [s
(k)
1 , . . . , s

(k)
n ]T are the observed signal vector, esti-

mated signal vector and source signal vector in the frequency

domain respectively, and (·)T denotes vector transpose. The

index k = 1, 2, . . . ,K denotes the k-th frequency bin, and K
is the number of frequency bins; m is the number of micro-

phones and n is the number of sources. H(k) and W(k) are the

mixing matrix and the unmixing matrix respectively. In this

paper, we assume that the number of sources is the same as

the number of microphones, i.e. m = n.

Independent vector analysis is proposed as a frequency

domain solution which can theoretically avoid the permuta-

tion problem by preserving the dependency between different

frequency bins of each vector source while maximizing the

independence between the vector sources. The IVA method

adopts the Kullback-Leibler divergence between the joint

probability density function p(ŝ1 · · · ŝn) and the product

of marginal probability density functions of the individual

source vectors
∏
q(ŝi) as the cost function [8].

J = KL(p(̂s1 · · · ŝn)||
∏

q(̂si))

= const−
K∑

k=1

log|det(W(k))| −
n∑

i=1

E[logq(̂si)]
(3)

where E[·] denotes the statistical expectation operator, det(·)
is the matrix determinant operator. The dependency between

different source vectors should be removed but the interre-

lationships between the components of each vector can be

retained, when the cost function is minimized. The inter-

frequency dependency is modelled by the probability density

function of the source.

For traditional CBSS approaches, the scalar Laplacian

distribution is widely used for the source prior. However,

the resultant nonlinear score function is a univariate function,

which is not designed to preserve the dependency between

different frequency bins for each source. IVA exploits a mul-

tivariate spherically symmetric Laplace (SSL) distribution as

the source prior, which can be written as

q(si) ∝ exp
(
−

√
(si − μi)†Σ−1

i (si − μi)
)

(4)

where (·)† denotes the Hermitian transpose, μi and Σ−1
i are

respectively the mean vector and inverse covariance matrix

of the i-th source. When the cost function (3) is minimized

by the gradient descent method, the nonlinear score function

contained in the update equations is derived according to the

source prior [8]. We assume that the mean vector is a zero

vector. The covariance matrix is taken to be a diagonal matrix

due to the orthogonality of the Fourier bases, which implies

that each frequency bin sample is uncorrelated with the oth-

ers. As such, the nonlinear score function can be obtained

as:

ϕ(k)(̂si) = −∂logq(ŝ
(1)
i · · · ŝ(k)i )

∂ŝ
(k)
i

=
ŝ
(k)
i /(σ

(k)
i )2√∑K

k=1

∣∣∣ ŝ
(k)
i

σ
(k)
i

∣∣∣
2

(5)

where σ
(k)
i denotes the standard deviation of the ith source

at the kth frequency bin. It is a multivariate function, and

the dependency between the frequency bins can thereby be

retained in learning.

3. INDEPENDENT VECTOR ANALYSIS WITH NEW
SOURCE PRIOR

The nonlinear score function is used to retain the inter-

frequency dependency, and it is claimed in [8] that the non-

linear score function above in (5) could be replaced. An

improved multivariate nonlinear function could be designed

to achieve better separation performance. Because the non-

linear function is derived based on the probability density

distribution of the source, a more appropriate source prior

will help to improve the separation performance.

3.1. Multivariate generalized Gaussian distribution

The univariate generalized Gaussian distribution takes the

form

q(si) ∝ exp
(
−
( |si − μ|

α

)β)
(6)

where α is the scale parameter and β is the shape parameter.

If α is chosen properly, when β = 2, it becomes the Gaussian

distribution, and when β = 1, it is the Laplace distribution.

We extend it to the multivariate case; the multivariate gen-

eralized Gaussian distribution has the form

q(si) ∝ exp
(
−
(√

(si − μi)†Σ−1
i (si − μi)

α

)β)
(7)
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when α = 1 and β = 1, it is the multivariate Laplace distri-

bution, i.e. spherically symmetric Laplace, which is adopted

as the source prior for the original IVA algorithm.

One important property of the univariate generalized

Gaussian distribution is, the smaller the β, the heavier are the

tails. This property can also extend to the multivariate case.

3.2. New source prior for independent vector analysis

In this paper, we therefore propose a new multivariate dis-

tribution as the source prior for independent vector analysis

which takes the form

q(si) ∝ exp
(
− 3

√
(si − μi)†Σ−1

i (si − μi)
)

(8)

which also preserves the inter-relation between different fre-

quency domain components of each source vector. Both the

new proposed source prior and the source prior adopted by

original IVA belong to the family of multivariate generalized

Gaussian distributions. When α = 1 and β = 1, it is the orig-

inal source prior, and when α = 1 and β = 2
3 , it is the new

proposed source prior. Because of the property of the multi-

variate generalized Gaussian distribution, as β is reduced, the

heavier will be the tails. Thus, the new proposed source prior

has heavier tails than the original one, which suggests more

robustness to outliers. Due to the time-variability of speech,

it is important to make the source prior robust to outliers to

achieve a better performance.

When this new source prior is used to derive the nonlin-

ear score function with the same assumption when we derive

equation (5), we obtain

ϕ(k)(̂si) =
ŝ
(k)
i /(σ

(k)
i )2

3

√
[(̂si − μi)†Σ−1

i (̂si − μi)]2
(9)

where Σ−1
i = diag[ 1

(σ
(1)
i )2

, · · · , 1

(σ
(K)
i )2

]. If we expand the

equation under the cubic root, it can be written as:

[(̂si −μi)
†Σ−1

i (̂si −μi)]
2 =

K∑
k=1

∣∣∣ ŝ
(k)
i

σ
(k)
i

∣∣∣
4

+
∑
u �=v

cuv|ŝ(u)i |2|ŝ(v)i |2

(10)

which contains cross items
∑

u �=v cuv|ŝ(u)i |2|ŝ(v)i |2, and cuv
is a scalar constant between the u-th and v-th frequency bins.

These terms are related to the fourth order relationships be-

tween different components for each source vector, represent

the level of interdependency between different frequency

bins. Thus, this new multivariate nonlinear function can pro-

vide a more informative model of the dependency structure.

Moreover it can better describe the speech model.

Such fourth order relationships of speech signals here not

been used in the original IVA. We will show an example of

the second order relationships and the fourth order relation-

ships inherent to a particular speech signal “si1010.wav” from

the TIMIT database [10], with 8 kHz sampling frequency and

1024 DFT length. The length of this speech is three seconds

approximately. Fig. 1(a) is part of the image display of el-

ements of the covariance matrix formed by sample interre-

lationships between the elements of the signal vector, which

is correspondent to the low frequency bins. We can hardly

observe any information correspondent to the high frequency

bins due to the limited energy. Therefore, we only show part

of the image. We can see that only the diagonal has signif-

icant second order relationship information. This is because

the Fourier transform is an orthogonal based transform.

In order to exploit the fourth order information, we con-

struct a fourth order matrix⎛
⎜⎜⎝

E[(s
(1)
i )2(s

(1)
i )2] · · · E[(s

(1)
i )2(s

(K)
i )2]

...
. . .

...

E[(s
(K)
i )2(s

(1)
i )2] · · · E[(s

(K)
i )2(s

(K)
i )2]

⎞
⎟⎟⎠ (11)

Fig. 1(b) is part of this fourth order matrix, which is also

correspondent to the same low frequency bins as Fig. 1(a). It

is evident that there are fourth order relationships throughout

the matrix not only on the diagonal. Thus, such fourth order

relationships should be exploited to help separation.
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Fig. 1. Second order and fourth order inter frequency relation-

ships information of the speech signal “si1010.wav”, x and y

dimensions correspond to frequency bins 1 to 128 of 512.

3.3. Comparison with other source prior models

In Lee’s paper [9], the source priors suitable for IVA are dis-

cussed. The source prior is described as:

q(si) ∝ exp(−‖si‖p) 1
r = exp

(
−

∑
k

|s(k)i |p
) 1

pr

(12)

the parameter r is the sparseness parameter. It has been shown

that the spherical symmetry assumption is suitable for mod-

eling the frequency components of speech, i.e. p = 2. And

it is suggested that the best separation performance can be

achieved when r is around 7 .

Our new proposed source prior also belongs to this fam-

ily. If we choose p = 2 to make it spherically symmetric, and

choose r = 3
2 , the proposed source prior can be obtained. Our

experimental results have found that the improvement of per-

formance is not robust when r is around 7, so Lee’s evaluation

in [9] appears misleading, however the ML-IVA which adopts

our new source prior can consistently achieve improved sep-

aration performance.
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4. EXPERIMENTS

In this experiment, we used the TIMIT dataset [10]. Each

speech signal was approximately seven seconds long. The

image method [11] was used to generate the room impulse re-

sponses, and the size of the room was 7× 5× 3m3. The DFT

length was 1024, and the reverberation time RT60 = 200ms.

We used a 2 × 2 mixing case, for which the microphone po-

sitions are [3.48, 2.50, 1.50]m and [3.52, 2.50, 1.50]m re-

spectively. The sampling frequency was 8kHz. The separa-

tion performance was evaluated objectively by the signal-to-

distortion ratio (SDR) and signal-to-interference ratio (SIR)

[12].

We chose two different speech signals randomly from the

TIMIT dataset and convolved them into two mixtures. Then

the orignal IVA method, the ML-IVA method with our pro-

posed source prior and ML-IVA with Lee’s source prior where

the sparseness parameter r = 7, were all used to separate the

mixtures respectively. Then we changed the source positions

to repeat the simulation. For every pair of speech signals,

three different azimuth angles for the sources relative to the

normal to the microphone array were set for testing, these an-

gles were selected from 30, 45, 60 and -30 degrees. After that,

we chose another pair of speech signals to repeat the above

simulations. In total, we used ten different pairs of speech

signals, and repeated the simulation 30 times at different po-

sitions. Table 1 shows the average separation performance for

each pair of speech signals in terms of SDR and SIR in dB.

Table 1. Separation performance comparison (SDR/SIR)
original proposed Lee’s

mixture 1 12.27/14.08 12.90/14.84 4.74/5.62

mixture 2 18.13/19.57 18.47/19.86 18.34/19.81

mixture 3 8.88/10.72 11.83/13.74 11.41/13.19

mixture 4 15.57/16.98 16.92/18.46 5.95/7.16

mixture 5 18.10/20.14 18.69/20.47 15.44/16.94

mixture 6 18.81/20.30 19.58/20.98 3.71/4.35

mixture 7 15.94/17.88 16.59/18.40 8.63/10.73

mixture 8 15.29/19.88 15.75/20.41 16.03/20.61

mixture 9 18.58/20.75 19.05/20.89 17.35/18.80

mixture 10 18.80/20.28 19.31/20.60 0.78/1.48

The experimental results show clearly that IVA with the

proposed source prior can consistently improve the separation

performance. However, for the IVA with Lee’s source prior,

the separation improvement is not consistent, in some cases

there is even no separation such as mixtures 1, 6 and 10. Even

though it can achieve better separation than original IVA, it is

still no better than the proposed method. Only for mixture

8, does it achieve the best separation performance. We also

found similar results with the sparseness parameter around 7.

Therefore, the IVA with the proposed source prior is the best

method, which can consistently achieve better separation per-

formance. The average SDR improvement and SIR improve-

ment are approximately 0.9dB and 0.8dB respectively.

In the second experiment, we tested the robustness of the

IVA with the proposed source prior in different reverberant

room environments. We selected two speech signals from the

TIMIT dataset randomly and convolved them into two mix-

tures. The azimuth angles for the sources relative to the nor-

mal to the microphone array were set as 60 and -30 degrees.

Both the original IVA and the proposed method were used to

separate the mixtures. The results are shown in Fig 2, which

show the separation performance comparisons in different re-

verberant environments. Fig. 2(a) and Fig. 2(b) show the

SDR and SIR comparison respectively. They indicate that the

proposed algorithm can consistently improve the separation

performance in different reverberant environments.
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Fig. 2. Separation comparison between original and proposed

IVA algorithms as a function of reverberation time.

5. RELATION TO PRIOR WORK

This paper focuses on the design of the source prior for in-

dependent vector analysis (IVA). The source prior for inde-

pendent vector analysis is important because the nonlinear

score function used to keep the inter-frequency dependency

is derived based on the probability density function of the

source. Originally, the spherically symmetric Laplace dis-

tribution is widely used as the source prior for IVA [8][13],

adaptive step size IVA [14], fast fixed-point IVA [15], auxil-

iary function based IVA [16] and audio video based IVA [17].

However, this source prior is not necessarily the best form. A

better source prior which can exploit other relationships be-

tween different frequency bins is still needed. In paper [18],

a chain-like source model is introduced. The analysis of the

selection of the source prior is also discussed in [9]. Recently

in [19], the multivariate Gaussian model is proposed as the

source prior, which can exploit the second order correlation.

However, second order correlation is minimal for frequency

domain BSS. In this paper, we proposed a fresh source prior

which belongs to the family of multivariate generalized Gaus-

sian distributions. The new source prior can introduce the

fourth order terms between different frequency bins in the

score function to better preserve the inter-frequency depen-

dency. Moreover, it can also be adopted for all kinds of IVA

methods above, which has been done but not presented in this

paper. The experimental results show that the IVA method

with the new source prior can consistently achieve improved

separation performance.
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