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ABSTRACT

In this paper, we propose a novel scheme to supervised nonnegative
matrix factorization (NMF). We formulate the supervised NMF as
a sparse optimization problem assuming the availability of a set of
basis vectors, some of which are irrelevant to a given matrix to be de-
composed. The proposed scheme is presented in the context of music
transcription and musical instrument recognition. In addition to the
nonnegativity constraint, we introduce three regularization terms: (i)
a block ℓ1 norm to select relevant basis vectors, and (ii) a temporal-
continuity term plus the popular ℓ1 norm to estimate correct activa-
tion vectors. We present a state-of-the-art convex-analytic iterative
solver which ensures global convergence. The number of basis vec-
tors to be actively used is obtained as a consequence of optimization.
Simulation results show the efficacy of the proposed scheme both in
the case of perfect/imperfect basis matrices.

Index Terms— supervised nonnegative matrix factorization,
sparse optimization, convex analysis

1. INTRODUCTION

Nonnegative matrix factorization (NMF) has been an active research
topic of great importance in signal processing over the decades [1–
6]. The problem can be stated simply as follows: decompose a given
nonnegative data-matrix Y into W H(≈ Y ), where both matrices
W and H must be nonnegative. Here, W is a basis matrix (a set of
basis vectors) and H is an activation matrix (a set of activation vec-
tors). A challenging issue in the (unsupervised) NMF is the source-
number determination; i.e., it is required to know the exact number
of basis vectors prior to decomposition [7, 8]. A larger number of
columns in W (than it should be) would result in producing unde-
sired basis vectors, while a smaller number of columns would fail in
capturing desired basis vectors.

The major contribution of this paper is to present a sparse op-
timization scheme to supervised NMF based on a state-of-the-art
technique developed in convex analysis. We present the proposed
scheme in the context of polyphonic music transcription and musical
instrument recognition although it is applicable to general supervised
NMF problems. A remarkable advantage is that there is no need to
make the source-number determination prior to decomposition. The
proposed approach is based on the assumption that a set of basis
vectors, some of which are irrelevant to the matrix Y , is available in
decomposition, and the source number is determined automatically
as the number of relevant basis vectors obtained by sparse optimiza-
tion. (The terms relevant and irrelevant are explained in Section 2.)
To select the relevant basis vectors and to estimate the activation vec-
tors accurately in response to Y , we adopt the sparse optimization
framework with the following regularization terms, in addition to
an indicator function penalty imposing the nonnegativity constraint:
(i) a block ℓ1 norm and (ii) temporal-continuity term [6] and the ℓ1
norm of a vectorized H (i.e., the sum of the absolute values of all
entries of H ). The block ℓ1 norm plays a role in selecting the rel-
evant basis vectors from the basis matrix. The temporal-continuity
term together with the ℓ1 norm contributes mainly to estimating the

correct activation vectors. From the convex optimization viewpoint,
the cost function can be seen as a sum of a smooth convex func-
tion (the data-fidelity term plus the temporal-continuity term) and
the three nonsmooth, but proximable, convex functions (an indica-
tor function to enforce nonnegativity, the block ℓ1 norm, and the ℓ1
norm). Here, proximable means that the Moreau proximity opera-
tors defined in Section 2.2 can be computed. To find a minimizer
of the cost function, we present the iterative solver of generalized
forward-backward splitting (GFBS) algorithm [9], which guarantees
convergence to an optimal solution. The simulation results show the
efficacy of the proposed scheme in an application to polyphonic mu-
sic transcription and music instrument recognition.
Relation to prior work: Grindlay and Ellis have proposed a sta-
tistical approach to supervised NMF under an assumption (similar
to the current study) on the availability of W [10]. Their method
is based also on an additional statistical assumption that “a suitably
normalized magnitude spectrum can be modeled as a joint distri-
bution over time and frequency”. The expectation maximization
algorithm is employed therein, and hence convergence to a global
solution is not ensured in general. Our approach is, in contrast, de-
terministic (relying on no statistical assumption) and, as mentioned
already, global convergence is ensured. Dessein et al. have proposed
a real-time event-detection scheme based on convex quadratic pro-
gramming [11]. The approach has been developed for real-time pro-
cessing and could fail in estimating activation vectors correctly even
in simple numerical simulations as will be shown in Section 3, al-
though global convergence to an optimal point of their cost function
is ensured. This is because the approach makes no use of temporal
information, while the proposed scheme exploits it via the temporal-
continuity term and the ℓ1 norm. Indeed, the proposed scheme is
quite flexible and expandable in the sense that other possible con-
vex penalties could be easily incorporated, although it is beyond the
scope of the present work.

2. SUPERVISED NMF BY SPARSE OPTIMIZATION

We assume that the basis matrix W is given but it may contain such
basis vectors that are irrelevant to Y as well as relevant ones; the
terms relevant and irrelevant are explained as follows. Assume for
instance that we have four basis vectors, say w1,w2,w3,w4, which
represent notes of piano (pitches: C, D) and notes of guitar (pitches:
C, D) respectively. If Y is generated from an audio signal composed
of a note of piano-C (w1) and a note of guitar-D (w4), we refer to
w1 and w4 as relevant basis vectors and to w2 and w3 as irrelevant
ones.

To select relevant basis vectors, we formulate the supervised
NMF as a sparse optimization problem. This offers an attractive
way to avoid making the source-number determination prior to de-
composition. As will be seen in Section 3, the proposed scheme is
robust against possible imperfection in W (i.e., mismatches between
W and the set of true basis vectors associated with the instruments
present in the input audio signal). (How to learn W prior to decom-
position practically is described in Section 2.2.)
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2.1. Problem Formulation

We formulate the supervised NMF problem as the following sparse
optimization problem (see, e.g., [12] for a comprehensive tutorial
about sparse optimization):

(P0) min
H∈C

‖H‖row-0 s.t. ‖Y − W H‖2
F ≤ ǫ1,

LX

l=1

N−1X

n=1

(hl,n+1 − hl,n)2 ≤ ǫ2,

LX

l=1

‖ĥl‖0 ≤ ǫ3,

where Y ∈ R
M×N
≥0 , which denotes the set of all nonnegative valued

matrices of size M ×N , W ∈ R
M×L
≥0 , H =

h
ĥ1 ĥ2 · · · ĥL

iT

∈

H := R
L×N , hl,n denotes the (l, n)-entry of H , C := R

L×N
≥0 ⊂

H, ‖·‖row-0 the row-ℓ0 norm which counts the number of nonzero
row vectors, ‖·‖F the Frobenius norm, ‖·‖0 the ℓ0 norm which
counts the number of nonzero entries, ǫ1, ǫ2 > 0 are small con-
stants, and ǫ3 a positive integer. Here, (·)T stands for transpose,
H is the Hilbert space of the activation matrix H to be optimized,
and ĥls are referred to as activation vectors. The problem (P0) is
difficult to solve directly in practice because it has a combinatorial
nature. We therefore introduce convex relaxations, reformulating
(P0) into the following unconstrained convex optimization problem:

(P1) min
H∈H

J(H) = ‖Y − W H‖2
F + iC(H)| {z }

(a)

+λ1

LX

l=1

‖ĥl‖2

| {z }
(b)

+λ2

LX

l=1

N−1X

n=1

(hl,n+1 − hl,n)2 + λ3

LX

l=1

NX

n=1

|hl,n|

| {z }
(c)

,

where ‖·‖2 denotes the ℓ2 norm. The penalty terms in (P1) are de-
tailed below.

(a) Nonnegativity constraint: The term iC(H) is an indicator
function defined as follows:

iC(H) =


0, if H ∈ C,
∞, otherwise,

which enforces an optimal H to be nonnegative.

(b) Basis-vector selection: The term λ1

PL

l=1 ‖ĥl‖2 is the
block ℓ1 norm penalty for selecting the basis vectors relevant
to Y . Typically, the number N of the columns of Y corre-
sponds to a few seconds and many of the basis vectors tend
to be irrelevant to Y , implying that many of the activation
vectors would be the zero vectors (i.e., H would be block
sparse).

(c) Correct activation-vector estimation: The term λ2

PL

l=1PN−1
n=1 (hl,n+1−hl,n)2 enhances temporal continuity by sup-

pressing the differences between the values in adjacent frames
of each activation vector [6]. The term λ3

PL

l=1

PN

n=1 |hl,n|

is the popular ℓ1 norm of vec(H) :=
h
ĥ

T

1 ĥ
T

2 · · · ĥ
T

L

i
T

,

which is expected to discriminate active and inactive frames
due to its sparsity-promoting property. The two terms jointly
contribute to estimating the activation vector correctly.

2.2. Numerical Algorithm

The cost function in (P1) can be written in the following form:

J(H) = ϕ(H)| {z }
smooth

+
3X

j=1

ψj(H)

| {z }
nonsmooth

,

where

ϕ(H) := ‖Y − W H‖2
F + λ2

LX

l=1

N−1X

n=1

(hl,n+1 − hl,n)2,

ψ1(H) := iC(H),

ψ2(H) := λ1

LX

l=1

‖ĥl‖2,

ψ3(H) := λ3

LX

l=1

NX

n=1

|hl,n|.

Here, ϕ is a differentiable convex function with the Lipschitz-
continuous gradient (i.e., ϕ is smooth) while ψj , j = 1, 2, 3, are
nonsmooth but proximable convex functions. (See [13, 14] for
details about convex analysis in Hilbert spaces.)

Definition 1 In the real Hilbert space (H, ‖·‖F), we define the fol-
lowing.

(a) Given any proper and lower-semicontinuous convex function
ψ : H → R, the proximity operator of ψ of index γ > 0 for
any X ∈ H is defined as

proxγψ(X) := argmin
Y ∈H

„
ψ(Y ) +

1

2γ
‖X−Y ‖2

F

«
,

(b) Given any nonempty closed convex set K ⊂ H, the metric
projection of any X ∈ H onto the set K is defined as

PK(X) := argmin
Y ∈K

‖X − Y ‖F.

Note that the proximity operator is a generalization of the metric
projection because

proxγiK = PK , ∀γ > 0.

The problem (P1) can iteratively be solved by generating the
sequence of the auxiliary variables (Z

(k)
j )k∈N ⊂ H, j = 1, 2, 3,

and (H (k))k∈N ⊂ H, with initial estimates Z
(0)
j , j = 1, 2, 3, and

H
(0) :=

P3
j=1 ωjZ

(0)
j as follows:

Z
(k)
j := Z

(k−1)
j + α

„
prox γ

ωj
ψj

(2H
(k−1) − Z

(k−1)
j

−γ∇ϕ(H (k−1))) − H
(k−1)

”
, j = 1, 2, 3,

H
(k) :=

3X

j=1

ωjZ
(k)
j ,
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where

ωj ∈ (0, 1) s.t.
3X

j=1

ωj = 1, j = 1, 2, 3,

α ∈

„
0,min


3

2
,
ηγ + 2

2ηγ

ff«
, (1)

γ ∈

„
0,

2

η

«
, (2)

η = 2σmax(W̄
T
W̄ + λ2D̄),

W̄ =

2
664

W O

W

. . .
O W

3
775 ∈ R

NM×NL
,

D̄ = D ⊗ IL ∈ R
NL×NL

,

D =

N−1X

n=1

(en+1 − en)(en+1 − en)
T ∈ R

N×N
,

where {en}
N
n=1 denotes the standard basis for R

N , ⊗ denotes the
Kronecker product [15], IL denotes the L× L identity matrix, and
σmax(W̄

T
W̄ + λ2D̄) is the maximum modulus of the eigenvalues

of W̄
T
W̄ + λ2D̄.

The gradient ∇ϕ and the proximity operators prox γ
ω2
ψ2

and

prox γ
ω3
ψ3

can be computed as follows:

∇ϕ(H) = 2W
T
W H − 2W

T
Y + 2λ2HD,

prox γ
ω2
ψ2

(H) =
LX

l=1

max

(
1 −

λ1γ

ω2‖ĥl‖2

, 0

)
elĥ

T

l ,

prox γ
ω3
ψ3

(H)=

LX

l=1

NX

n=1

sgn(hl,n)max


|hl,n|−

λ3γ

ω3
,0

ff
El,n,

where sgn denotes the signum function and El,n is the L×N matrix
having one at the (l, n)-entry and zeros elsewhere.

2.3. Discussion on Proposed Scheme

The proposed scheme ensures the global convergence as stated be-
low.

Theorem 1 The sequence (H (k))k∈N generated by the algorithm
presented above is convergent to a minimizer of J(H), which is a
minimizer of eJ(H) := ϕ(H)+ψ2(H)+ψ3(H) over the nonneg-
ativity constraint set C.
Proof: It is readily verified by [9, Theorem 2.1]. ✷

It is seen from (1) and (2) that the upper bounds of the step size
parameters α and γ depend on η which is computationally expensive
to obtain because the size of W̄ is typically large. The following
lemma is useful in practice to reduce computational costs.
Lemma 1

σmax(W̄
T
W̄ + λ2D̄) ≤ σmax(W̄

T
W̄ ) + σmax(λ2D̄)

= σmax(W
T
W ) + σmax(λ2D̄).

Proof: It can be verified by Rayleigh-Ritz theorem [16]. ✷

Lemma 1 implies that, instead of η, one may use η̃ :=
2σmax(W

T
W )+2σmax(λ2D̄) ≥ η which is computationally less

expensive and offers step size parameters no greater than the respec-
tive upper bounds. We therefore use α := (1−εα) min{3

‹
2, (η̃γ+

2)
‹
2η̃γ} and γ := (2−εγ)

‹
η̃ for small constants εα := 1.0×10−4,

εγ := 2.0 × 10−4.

Remark 1

(a) How to learn W : Each column vector of W is generated
simply by unsupervised NMF. Various single isolated tones
generated from a wide variety of instruments are used as
training audio signals, and unsupervised NMF is performed
for each tone which is assumed to be associated with a sole
basis vector. In a string of this implementation over all tones,
basis vectors corresponding to the isolated tones are ac-
quired eventually, and normalizing those basis vectors yields
W . The single isolated tones for this process are available
at, e.g., RWC music database [17], MAPS database [18], etc.

(b) Using the Moore-Penrose pseudo-inverse: One may think
that the Moore-Penrose pseudo-inverse W

† of W could be
used for computing H as H = W

†
Y when M > L and

rank(W ) = L, which is often the case in the context of the
present study. In our experiments, however, this approach
always resulted in unsuccessful decomposition; H tends to
contain negative entries and to also be a dense matrix.

3. SIMULATION RESULTS

3.1. Case of Perfect W

We show the efficacy of the proposed scheme for polyphonic mu-
sic transcription and musical instrument recognition in the case of
‘perfect’ W ; i.e., we assume that the basis vectors to represent the
input magnitude spectrogram Y are exactly known. As the timbre
of the input audio signal, we use the following three types of wave:
sine waves, triangle waves, and square waves. The waves are gener-
ated by matlab. For simplicity, only 14 tones of the waves are used.
The basis matrix W is composed of amplitude spectra which are
respectively obtained by the short-time Fourier transform (STFT) of
the three waves of the same 14 tones. This is the case of perfect W

since the spectra of these waves are time-invariant.
We compare the performance of the proposed scheme with the

Beta Non-negative Decomposition (BND) method [11], since it has
been reported that the BND method performs better than the other
approaches and ensures the global convergence to the minimizer of
its cost function although it has been proposed primarily for real-
time processing [11]. All the audio signals for both the input au-
dio signal and the audio signals to learn W are sampled at 16 kHz.
STFT is computed using a Hamming window that is 64 ms long with
a 32 ms overlap. The parameters of the proposed scheme are set to
λ1 = 2, λ2 = 0.2, and λ3 = 0.8, respectively, to attain reason-
able performance. The initial estimates Z

(0)
j , j = 1, 2, 3, are set to

random matrices, and the algorithm is run for 600 iterations. The pa-
rameter of BND is set to β = 0.5 to attain reasonable performance.
The initial estimate for BND is set to a matrix with all entries equal
to one, and the algorithm is run for 600 iterations at each frame. As
post-processing, for both system, all the entries of H are divided by
the maximum value of each estimated H , and the threshold which is
set manually to 0.05 is used for evaluation; each entry of H which
is greater (or smaller) than the threshold is considered to be active
(or inactive).

Fig. 1(a) illustrates the sound volumes of Y over 1.5 seconds
approximately, and Figs. 1(b) and 1(c) depict the activation vectors
of H obtained by the proposed and BND methods, respectively.
In Fig. 1(c), notable incorrect estimates of activation vectors are
marked in red as follows. Substitution and missed errors are indi-
cated by squares, false alarms remaining after post-processing are
indicated by solid circles, and the frames that have no errors in terms
of music transcription but have inaccurate variations of sound vol-
umes are indicated by dashed circles. The resulting H obtained by
the BND method contains some components having large values (see
the activation vector at the center of the bottom row in Fig. 1(c)), and
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(a) Ground-truth reference
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(b) The proposed scheme
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(c) BND [11]

Fig. 1. Ground-truth reference and the resulting Hs obtained by
the proposed and BND methods. The horizontal and vertical axes
correspond to time and amplitudes, respectively. The pair of rows
on the top (blue), in the middle (black), and at the bottom (light
green) represent 14 activations for sine, triangle, and square waves,
respectively.

therefore the other components representing correct activations are
small due to normalization.

Table 1 summarizes the results in the standard evaluation met-
rics from the MIREX [19]. It is seen that the proposed scheme attains
higher scores in F and A and lower scores in the other metrics (mea-
suring different types of errors), meaning that it outperforms BND
[11] in all the metrics. It is also seen from Fig. 1(b) that the proposed
scheme selects the relevant basis vectors correctly and estimates the
activation vectors accurately. This is thanks to the three regularizers,
among which the temporal-continuity and the block ℓ1 norm are not
exploited in the BND method.

3.2. Case of Imperfect W

To assess the generalization ability, we conduct another simulation,
considering imperfection in W . To be specific, each component
wm,l of W is corrupted by its proportional amount of noise urwm,l
where ur ∼ U(−r, r) for r = 0, 0.05, 0.10, 0.15. Here, U(−r, r)
denotes the uniform distribution in the interval (−r, r). All the other
conditions, including the parameters, the number of iterations, and
the threshold, are the same as in Section 3.1. Fig. 2 plots the results
in F-measure and the total error [19] against r. It is seen that the pro-
posed scheme outperforms the BND method also in generalization

Table 1. Transcription evaluation from the MIREX [19]. Each
metric stands for F-measure, Accuracy, substitutions, misses, false
alarms, and total errors.

Algorithm F A Esubs Emiss Efals Etot

Proposed 82.1 69.6 0 0 43.7 43.7
BND [11] 62.6 45.6 12.7 7.0 63.4 83.1
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Fig. 2. Comparisons in (a) F-measure and (b) total error for imper-
fect W .

ability.

4. CONCLUDING REMARKS

This paper presented a simple and flexible approach to super-
vised NMF based on a sparse optimization problem in the con-
text of music transcription and musical instrument recognition.
We designed the cost function by penalizing the data-fidelity term
with four convex functions three of which are nonsmooth: (i) the
nonnegativity-enforcing indicator function, (ii) the block ℓ1 norm,
(iii) the temporal-continuity term, and (iv) the ℓ1 norm. The GFBS
algorithm ensures global convergence to a minimizer of the cost
function. The simulation results showed that block ℓ1 norm is ef-
fective in selecting the relevant basis vectors from the basis matrix
and that the temporal-continuity term and the ℓ1 norm are effective
in estimating the activation vectors correctly. It should be remarked
again that the challenging task of determining the exact number of
relevant basis vectors prior to decomposition is unnecessary in the
proposed scheme. It will be an interesting future work to extend the
proposed scheme with divergence such as the Itakura-Saito diver-
gence.
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