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ABSTRACT

Solving inverse problems in signal processing often involves mak-
ing prior assumptions about the signal being reconstructed. Here the
appropriateness of the chosen model greatly determines the quality
of the final result. Recently it has been proposed to model images
by representing them as sets of smaller patches arising from an un-
derlying manifold. This model has been shown to be surprisingly
effective in tasks such as denoising, inpainting, and superresolu-
tion. However, such a representation is fraught with the difficulty
of finding the intersection of many presumably non-linear manifolds
in high-dimensional space, which precludes much of its potential
use. This paper proposes an efficient method of solving this prob-
lem using a kernel methods variant of the projection onto convex
sets algorithm to quickly find the intersection of many manifolds
while learning their non-linear structure. Indeed the final solution
can even be expressed in closed form. We foresee our method al-
lowing a patch-based regularization to be applied across a wide vari-
ety of inverse problems, including compressive sensing, inpainting,
deconvolution, etc. Indeed, as a proof of concept of our approach,
we show how it can be employed in the regularization of an image
denoising problem. Here, it even outperforms a state-of-the-art de-
noising technique, non-local means.

Index Terms— Patch-based image processing, inverse prob-
lems, kernel methods, manifold models, projection algorithms.

1. INTRODUCTION
A typical (linear) inverse problem in signal processing is formulated
as the problem of reconstructing a signal y∗ given the vector of mea-
surements z, obtained by the transformation:

z = Ay∗ + n. (1)
Usually the operatorA has rank less then the number of dimensions
of y∗, which makes the problem underdetermined with infinitely
many solutions. An example is reconstruction of a signal from its
compressive sensing measurements obtained with the measurement
matrix A. Another common example is denoising, where A = I ,
the identity matrix. Here additive noise n also makes the inverse
problem ill-posed. Other examples are image inpainting, deblurring,
and superresolution. In each case, in order to reconstruct a plausi-
ble y∗, additional assumptions about the sought signal (for example,
those of sparsity in a wavelet basis or low total variation) should be
made, which allow us to select the best estimate of the true solution
from the reduced set of possible solutions.

In image processing, it is often particularly desirable to retain
the sharp appearance of fine structural elements and patterns. To
describe these features, models employing smaller pieces (patches)
of the image are particularly effective. Exploiting similarity between
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patches was shown by Buydes et al. [1] to be very efficient denoising
method (known as the non-local means algorithm). Moreover, Gaus-
sian mixture models applied on image patches, which although re-
quires sufficient computational resources on training stage, allowes
to solve broader class of inverse problems [2, 3]. On the other hand,
patch-based methods for structural image editing (inpainting, retar-
geting, reshuffling, etc.) have also been surprisingly effective [4, 5].
The observation that patches, even though sampled from relatively
high dimensional space (R25 for 5×5 patches), can be parametrized
by far fewer coordinates gives rise to the manifold model, which
imposes mutual constraints on the pixel values of each patch. This
was observed by Lee et al., who studied the statistical properties of
image patches and corresponding manifolds in [6] suggesting their
non-linearity and Carlsson et al., who showed in [7] that the patch
manifold of the space of high-contrast images has the topology of a
Klein bottle.

However, one of the obstacles to using the manifold model for
patches is the problem of describing the whole image in terms of
patches. For example, nonparametric Bayesian model used by Chen
et al. [8] can be applied to describe the manifold corresponding to
one particular patch but does not extend to the case of overlapping
patches. Peyré in [9] uses the concept of manifold energy to regu-
larize inverse problems, which leads to tracing the trajectory of re-
constructed signal on the patch manifold. The main drawback of
this method is the necessity of iterative explicit projections onto the
densely sampled non-linear manifold, which creates a computational
burden. We will show a fast and efficient way of solving this problem
that allows sparse sampling of the manifold.

In our approach, instead of regarding an image as a trajectory on
a single patch manifold, we consider the wholeD-dimensional space
of images, where D equals the number of pixels. For any p× q-area
of the image pixel grid there is a corresponding pq-dimensional sub-
space of RD . The manifold model allows us to assume that patches
extracted from similar images lie on or close to a d-dimensional non-
linear manifold (with d < pq) within this subspace. Therefore, the
whole image lies on aD−pq+d-dimensional manifold of RD . Be-
cause there is one manifold constraint corresponding to each over-
lapping patch, the image lies at or close to the intersection of all
these manifolds. The number of distinct manifolds (related to every
possible patch position) is on the order of total number of pixels,
which in addition to their non-linear geometry, makes the problem
of finding intersections seemingly very hard.

The main idea of this paper is to use the kernel trick [10] to
deal efficiently with non-linearity of manifolds. In kernel meth-
ods, points x are mapped by some non-linear transformation Φ to
a higher-dimensional feature space, in which they can be analyzed
by linear methods. Eventually, this yields a non-linear solution when
mapped back to the original space. Efficiency is gained by the fact
that the images Φ (x) do not need to be computed explicitly. In-
stead, the kernel function κ (xi,xj) = 〈Φ(xi),Φ(xj)〉 is defined
to relate the inner products in the original and feature spaces. This
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allows us to obtain non-linear versions of popular linear machine
learning algorithms, such as Support Vector Machines, Ridge Re-
gression, and Principal Component Analysis (PCA), almost without
increasing their computational complexity [10, 11].

In particular, the kernel PCA (KPCA) algorithm is one of the
most powerful known methods for learning the structure of a man-
ifold from its samples. Indeed, other popular manifold learning al-
gorithms, such as Laplacian Eigenmaps [12] and Isomap [13], were
shown in [14] to be special cases of it. The key idea of KPCA is that,
in the induced feature space, the manifold becomes linear and can
be parametrized by PCA. Its effectiveness has been proved in many
signal processing settings. Besides direct application of KPCA for
denoising [15], it was used in [16] to locally parametrize a patch
manifold for the purpose of image deconvolution.

We will employ KPCA to linearize the manifolds intersection
problem in feature space. This will allow us to compute projections
onto the manifolds easily, iteratively find their intersection, and fi-
nally express the solution in closed form.

In Section 2, we will review the iterative projection method ap-
plied to the manifolds parametrized by their principal components.
The third section is dedicated to expressing the solution entirely in
terms of inner products and extending the algorithm to a higher-
dimensional non-linear feature space. The details of a possible appli-
cation of the proposed algorithm for image denoising are described
in Section 4 and experimental results are presented in Section 5.

2. SUBSPACE INTERSECTION METHOD REVIEW
We base our model on the assumption that the solution to the inverse
problem (1) lies on or close to the manifolds corresponding to dif-
ferent overlapping image patches, i.e. out of all possible solutions to
the inverse problem, we want the one that minimizes:

min
y

∑M
m=1 d

2 (y,Mm) , (2)

where d (y,Mm) = inf
x∈Mm

d (y,x) is the Euclidean distance from

point y to the m-th manifold.
Suppose first that each of the manifolds Mm is merely a dm-

dimensional affine subspace of RD (we will generalize this in Sec-
tion 3). Note that the manifolds here are permitted to have different
dimensions. Then, any point xi ∈ Mm can be expressed by its
subspace coordinates x′m,i as:

xi = Umx
′
m,i + µm , (3)

where Um is the matrix whose columns form an orthonormal basis
for the subspaceMm after eliminating the offset µm.

Problem (2) can then be solved by projecting y onto each sub-
space, and therefore reduces to finding the least squares solution of
a (possibly underdetermined) system of linear equations:

(I −UmU
T
m)y∗ = µm, m = 1, . . . ,M, (4)

where µm is assumed to be orthogonal to the columns of Um. To
solve it we can apply Cimmino’s iterative method, which is related
to the Landweber method and the projection onto convex sets algo-
rithm [17]. Its idea is, starting with some initial point y(0), to find
projections of the current solution onto all manifolds and average
them to get the next step approximation:

y(k+1) =
∑M
m=1 wmPm

(
y(k)

)
, (5)

where wm are non-negative weights that satisfy
∑M
m=1 wm = 1.

Proof of general convergence properties of the Landweber iteration
can be found in [18]. Figure 1 shows a graphical interpretation of
this algorithm for two subspaces.

Notice that this procedure results in a relevant solution regard-
less of whether the system of Eq. 4 is under- or overdetermined.
In the first case, the answer, which is the intersection point closest

Fig. 1. Finding the intersection of two affine subspaces by the itera-
tive projection algorithm given by Eq. 5.

to the initial guess, is not affected by the weights wi. This is the
behavior, one would want, for example, for a denoising purpose, as-
suming that the initial point is the noisy image. When the system of
Eq. 4 has no solution (if it defines, for example, parallel hyperplanes
or non-intersecting lines in R3), the iteration converges to the point
that minimizes the sum of squared distances to all manifolds. In this
case, non-equal weights wi may be introduced to make the solution
closer to one subspace than another.

3. KERNELIZING THE INTERSECTION ALGORITHM
We now show that the solution defined iteratively by Eq. 5 can be
written entirely in terms of inner products, so we may use the kernel
trick to extend it from linear subspaces to non-linear manifolds.

First we attempt to learn a description of each manifold Mm

from its nm samples (training points) xm,i. It can be specified
by its principal components um,k, k = 1 . . . dm obtained using
PCA and the offset vector. We consider the algorithm formulated
in terms of the centered inner product matrix Km with elements
(Km)i,j = 〈x̃m,i, x̃m,j〉, rather than the covariance matrix, to al-
low future extension to a higher-dimensional feature space by kernel
PCA [11, 14]. Then:

um,k =
∑n
i=1 x̃m,iαm,i,k , (6)

where αm,:,k denote values of the k-th eigenvector of Km di-
vided by the square root of the corresponding eigenvalue 1√

λm,k
to

achieve normalization in feature space. Here x̃m,i = xm,i − µm
denotes the centered manifold samples with µm defined as the sam-
ple mean µm = 1

nm

∑nm
i=1 xm,i = 1

nm
Xm1nm×1. We observe

that since all eigenvectors αm,:,k are orthogonal to the vector of
constant values 1, using non-centered samples xm,i in Eq. 6 does
not change the values of um,k.

Principal components of the m-th manifold can then be written
as Um = Xmα

T
m, where Xm is a D × nm matrix of manifold

samples arranged in columns andαm is a dm×nm matrix of scaled
eigenvectors of Km. Then, the projection of point y onto the m-th
manifold in the original coordinate system is:

Pm (y) = UmU
T
my + (I −UmU

T
m)µm . (7)

By substituting Eq. 7 into Eq. 5 and observing that y(k+1) =
Sy(k) + M , it can be shown that the K-th step approximation of
the solution takes the form:

y(K) = SKy(0) +
∑K−1
k=0 S

kM , (8)

whereS =
∑M
m=1 wmUmU

T
m =

∑M
m=1 wmXmα

T
mαmX

T
m ,

M =
∑M
m=1 wm

(
I −UmU

T
m

)
µm

=
∑M
m=1 wmXmcm , (9)

with cm =
(
I −αTmαmXT

mXm

)
1
nm

1, a nm×1 vector, com-
puted using only inner products.
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LetV m =
√
wmUm =

√
wmXmα

T
m to simplify the notation.

Then, for k > 0, Sk =
(∑M

m=1 V mV
T
m

)k
can be represented as a

product of block vectors and matrices with i, j = 1, . . . ,M :

Sk =
∑M
m1=1 . . .

∑M
mk=1 V m1V

T
m1
V m2V

T
m2

. . .V mkV
T
mk

=
[
· · · V i · · ·

] 
...

· · · V T
i V j · · ·
...


k−1 

...
V T
j

...

 .
Let us then define the following block matrices, each with en-

tries expressed entirely in terms of inner products:
• the

∑
dm × 1-dimensional vector h with M block entries

h[i] = V T
i y

(0) =
√
wiαiX

T
i y

(0) arranged vertically;
• the

∑
dm × 1-dimensional vector g with M block entries

g[i] = V T
i M =

√
wi
∑M
m=1 wmαiX

T
i Xmcm arranged

vertically;
• the

∑
dm×

∑
dm-dimensional matrixH with block entries

H [i,j] = V T
i V j =

√
wiαiX

T
i Xjα

T
j
√
wj .

Using this notation, Sk =
∑M
i=1

∑M
j=1 V iH

k−1
[i,j]V

T
j , and also

Sky(0) =
∑M
m=1 V mH

k−1
[m,:]h and SkM =

∑M
m=1 V mH

k−1
[m,:]g,

whereHk−1
[m,:] =

[
Hk−1

[m,1], H
k−1
[m,2], · · · , H

k−1
[m,M ]

]
.

Finally, let s = HK−1h+
∑K−1
k=1 H

k−1g, which can be split
into blocks of lengths dm as s[m] = s∑m−1

i=1 di+1...
∑m

i=1 di
.

Then rewriting Eq. 8 for the K-th step approximation of the so-
lution we get:

y(K) = SKy(0) +
∑K−1
k=1 S

kM +M

=

M∑
m=1

V mH
K−1
[m,:]h+

K−1∑
k=1

M∑
m=1

V mH
k−1
[m,:]g +M

=
∑M
m=1

√
wmXmα

T
ms[m] +

∑M
m=1 wmXmcm

=
∑M
m=1Xmγm , (10)

where γm =
√
wmα

T
ms[m] + wmcm.

Since computing γm involves only evaluation of inner products,
this algorithm can be easily extended to the non-linear case by sub-
stituting the entries of inner product matrices 〈xi,xj〉 with corre-
sponding values of the kernel function κ (xi,xj). Therefore, the
intersection of subspaces is sought in an implicitly induced higher-
dimensional feature space, which corresponds to finding the inter-
section of non-linear manifolds in the original space. The preimage
y∗ of the solution Φ(y(K)) =

∑M
m=1

∑nm
i=1 Φ(x

(m)
i )γ

(m)
i can thus

be found by minimizing the distance
∥∥∥Φ(y∗)− Φ(y(K))

∥∥∥2 in fea-
ture space. The form of Eq. 10 allows use of any of the preimage
methods described in [10, 19, 20]. The entire algorithm is summa-
rized in Table 1.

Moreover, we notice that the number of samples in training
sets Xm, which were used to learn parameters of manifolds, grows
rapidly with the size of the patches. Due to the form of the final
solution (Eq. 10), this directly affects the running time. However,
sparse (in terms of training data) approximation of the principal
components in feature space can be found, for example, by the
greedy method described in [21]. This allows us to compute the
kernel matrices for only very small subsets of the training points
x

(m)
i . This approach reduces the running time by several orders of

magnitude and was crucial to produce the results in Section 5.

Table 1. Manifolds intersection algorithm.
Inputs:
• training samples x(m)

i , i = 1 . . . nm of M manifolds;
• initial approximation to the solution y(0);
• type and parameters of kernel function κ (·, ·);
• number of iterations K.

Output: point y∗ in original space that optimizes the
criterion in Eq. 2.

for each manifold m
Create kernel matrices with entries
K̃

(m,m)
i,j ← κ

(
x

(m)
i ,x

(m)
j

)
, i, j = 1, . . . , nm,

K
(m,y)
i ← κ

(
x

(m)
i ,y(0)

)
, i, j = 1, . . . , nm;

Center the data in feature space by computing [11]:
K(m,m) ←

(
I − 1

nm
1 1T

)
K̃

(m,m)
i,j

(
I − 1

nm
1 1T

)
;

Find the eigendecomposition of
K(m,m) = AmΛmA

T
m ;

Choose dm leading eigenvectors and scale them:[
α

(m)
:,i

]T
= A

(m)
:,i

1√
Λ

(m)
i,i

, i = 1 . . . dm;

ĥm ←
√
wmαmK

(m,y); ĝm ← 0dm ;
for l = 1 . . .M

K
(m,l)
i,j ← κ

(
x

(m)
i ,x

(l)
j

)
,
i = 1 . . . nm,
j = 1 . . . nl;

cl ←
(
I −αTl αlK(l,l)

)
1
nl

1nl ;

ĝm ← ĝm +
√
wmwlαmK

(m,l)cl;
Ȟm,l ←

√
wmαmK

(m,l)αTl
√
wl;

endfor
Ĥm ← concatenaterows(Ȟm,1, Ȟm,2, . . . , Ȟm,M );

endfor
h← concatenatecolumns(ĥ1, ĥ2, . . . , ĥM );
g ← concatenatecolumns(ĝ1, ĝ2, . . . , ĝM );
H ← concatenatecolumns(Ĥ1, Ĥ2, . . . , ĤM );
s←HK−1h+

∑K−1
k=1 H

k−1g;
for m = 1 . . .M

ŝm ← s∑m−1
i=1 di+1...

∑m
i=1 di

;

γm ←
√
wmα

T
mŝm + wmcm;

endfor
Solve the preimage problem [10, 20, 19]:

ŷ∗ = argmin
y

∥∥∥Φ(y)−
∑M
m=1

∑nm
i=1 Φ(x

(m)
i )γ

(m)
i

∥∥∥2.

Note: In this table, indexes m, l refer to entire matrices or
vectors, and i, j denote scalar entries of a particular matrix.

Finally, we note that our algorithm can be run with several initial
conditions simultaneously by replacing the vector y(0) with a matrix
Y (0) with initial conditions arranged columnwise, which can further
reduce computational burden.

4. APPLICATION TO IMAGE DENOISING
To demonstrate the use of our algorithm in a practical patch-based
image processing application, we describe how it can be employed
for solving denoising problems. While we use denoising as a proof
of concept here, we emphasize that the main strength of our method
lies not in its application to patch-based image denoising, for which
there are already several other efficient algorithms such as [1, 22,
15, 23], but in its potential broad applicability across the spectrum
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of possible inverse problems. These denoising algorithms rely cru-
cially on the fact that local neighborhoods are roughly preserved as
they pass through the operator A in Eq. 1, so one can solve the
denoising problem locally, e.g. by working on patches of z. This
makes these sorts of algorithms unsuitable for more general inverse
problems such as compressive sensing in whichA does not preserve
locality, and the entries of z reflect only global behaviors of the im-
age y∗. By contrast, since our method creates a tractable model for
the whole image (as the union of many overlapping patches), it can
be applied also to more general inverse problems such as compres-
sive sensing. This will be explored further in future work.

For a denoising problem, given a library of training images
of a particular class (for example, images with high contrast
smooth edges), we form the set of all p × q patches extracted
from them. Then, for a D-pixel noisy image Iσ , instead of
finding the intersection of patch manifolds in RD directly, we
consider a set of its P × Q regions (P < 2p, Q < 2q). We
tile each region Rj with (P − p+ 1) (Q− q + 1) (the maxi-
mum number) of patches such that they all overlap in the middle
(2p− P ) × (2q −Q)-pixel area. Now to find the intersection of
manifolds R∗j ∈ RPQ for each Mm we define the set of training
samples Xm, m = 1 . . . (P − p+ 1) (Q− q + 1) by augmenting
the training set of patches (that are vectors in Rpq) with PQ − pq
lacking pixels of constant value (for example, gray pixels). Only
center pixels of each region R∗j , computed by the algorithm de-
scribed in Section 3, are retained. Proceeding in the same way for
the rest of pixels in Iσ we find the denoised image I∗σ .

5. EXPERIMENTAL RESULTS AND DISCUSSION
First, we will run our algorithm on a small synthetic example to
demonstrate that it finds the intersection of smooth surfaces. Then
we will show its application to regularizing the denoising problem.
In all considered examples we use the Gaussian kernel κ (xi,xj) =
exp

(
− 1
σ2 ‖xi − xj‖2

)
and an MDS-based approach for finding the

preimage (see [20] for details).
Figure 2 demonstrates the result of projecting a cloud of random

points onto the intersection of two non-linear smooth surfaces in R3.
For each projected point, the found solution lies on or close to the
real intersection curve, and is also close to the initialization point
y(0) as desired.

Fig. 2. Result of projecting a cloud of random points onto the inter-
section of two surfaces in R3. Notice how the projected points trace
the intersection curve while remaining close to the initial points.

To assess the effectiveness of the proposed algorithm for the
regularization of inverse problems using an underlying image patch
model, we consider denoising of a synthetic high contrast image as
well as a natural texture pattern using the procedure described in
Section 4, with training sets of p × q = 5 × 5 patches, used to si-

multaneously denoise one pixel of P × Q = 9 × 9 image regions
corrupted by additive zero-mean Gaussian noise. The results are
shown in Figure 3.

(a) (b), 16.7 dB (c), 17.4 dB (d), 26.5 dB

(e) (f), 16.9 dB (g), 21.6 dB (h), 22.0 dB
Fig. 3. Results of image denoising: original images (a, e), noisy
images (b, f), denoised using NL-means (c, g), denoised using pro-
posed method (d, h). Numbers represent corresponding PSNR. Our
algorithm preserves sharp high contrast edges of smooth curves as
well as details of texture pattern; notice their blurring by NL-means.

Notice that the local manifold patch model has retained sharp
contrast edges without blurring them and has also reconstructed
the pattern details with good quality. To quantify the denoising
performance we use peak signal-to-noise ratio (PSNR), defined as

PSNR = 10 log
max I2i,j

1
N

∑
(Ii,j−Ji,j)

2 , where I and J are the original

and denoised N -pixel images respectively. For comparison, our
method beats the near state-of-the-art non-local means denoising
algorithm, which is based on weighted averaging of similar image
patches [1]. Moreover, the running times of our algorithm are on
the order of 5-10 seconds for an entire 64 × 64 image, which is
quite fast and also comparable to the NL-means algorithm. In fact,
given a training set of patches, subject-independent terms that define
coefficients γm in Eq. 10 (mainly the matricesM ,H and g) can be
precomputed beforehand and used for processing of any image of a
particular class, which makes the implementation even faster.

6. CONCLUSION
In this paper we proposed a new approach to regularizing inverse
problems in image processing based on the model of overlapping
patches each drawn from a manifold, resulting in an intersecting
manifolds model for the entire image. This representation preserves
the local features of images, such as sharp edges of smooth curves
or details of textures. The kernel trick was used to describe presum-
ably non-linear manifolds as linear subspaces in higher-dimensional
feature space and to find their intersection with a simple iterative
projection algorithm.

Moreover, as a proof of concept of our approach, a computa-
tionally efficient method of image denoising based on the derived
algorithm, which shows results slightly better than those obtained
with the state-of-the-art approaches was described. However, we
want to emphasize that the capabilities of this model are not lim-
ited to denoising, but can also be extended to the regularization of
other inverse problems. For example, simply imposing an additional
set of linear constraints at each step of iterative projections makes
this setting suitable for broad variety of applications, such as solving
compressive sensing reconstruction, superresolution, or inpainting
problems. We hope to investigate the impact of our computationally
efficient patch-based image processing strategy on these problems in
future works.
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PCA and De-Noising in Feature Spaces,” in Proceedings of
the 1998 conference on advances in neural information pro-
cessing systems II, Cambridge, MA, USA, 1999, pp. 536–542,
MIT Press.

[16] Jie Ni, P. Turaga, V.M. Patel, and R. Chellappa, “Example-
Driven Manifold Priors for Image Deconvolution,” Nov. 2011,
vol. 20, pp. 3086–3096.

[17] H.J. Trussel and M.R. Civanlar, “The Landweber iteration and
projection onto convex sets,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 33, pp. 1632–1634, 1985.

[18] O. Strand, “Theory and methods related to the singular-
function expansion and landweber’s iteration for integral equa-
tions of the first kind,” SIAM Journal on Numerical Analysis,
vol. 11, no. 4, pp. 798–825, 1974.

[19] Paul Honeine and Cédric Richard, “A Closed-form Solution
for the Pre-image Problem in Kernel-based Machines,” J. Sig-
nal Process. Syst., vol. 65, no. 3, pp. 289–299, Dec. 2011.

[20] J.T.-Y. Kwok and I.W.-H. Tsang, “The Pre-Image Problem in
Kernel Methods,” Neural Networks, IEEE Transactions on,
vol. 15, no. 6, pp. 1517–1525, Nov. 2004.

[21] M. Ouimet and Y. Bengio, “Greedy spectral embedding,”
in Proceedings of the 10th International Workshop on Artifi-
cial Intelligence and Statistics. Omni Press Madison, WI, Jan.
2005, pp. 253–260.

[22] François G. Meyer and Xilin Shen, “Perturbation of the eigen-
vectors of the graph laplacian: Application to image denois-
ing,” CoRR, vol. abs/1202.6666, 2012.

[23] Michael Elad and Michal Aharon, “Image denoising via
learned dictionaries and sparse representation,” in In CVPR,
2006, pp. 17–22.

6077


