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ABSTRACT

Recently, a lot of attention has been given to penalized least
squares problem formulations for sparse signal reconstruction
in the presence of noise. The penalty is responsible for induc-
ing sparsity, where the common choice used is the convex
l1 norm. While an l0 penalty generates maximum sparsity it
has been avoided due to lack of convexity. With the hope of
gaining improved sparsity but more computational tractability
there has been recent interest in the lq penalty. In this paper
we provide a novel cyclic descent algorithm for optimizing
the lq penalized least squares problem when 0 < q < 1. Opti-
mality conditions for this problem are derived and competing
ones are clarified. We illustrate with simulations comparing
the reconstruction quality with three penalty functions: l0, l1
and lq , 0 < q < 1.

Index Terms— sparsity, lq optimization, nonconvex, in-
verse problem.

1. INTRODUCTION

Sparse regression has become a very popular topic of interest
in the last decade. It is widely used in many applications such
as machine learning, denoising, inpainting, deblurring, com-
pressed sensing, source separation and more, see [1–6]. The
usual regression model is given by:

y = Xβ + ε (1)

where yn×1 are the observations, βm×1 is a sparse vector of
interest, Xn×m is the regression matrix and εn×1 is the noise.
Following the parsimony principle, the aim is to choose the
simplest model i.e. the sparsest β that adequately explains
the data y. The sparsity requirement improves interpretability
and prevents overfitting.

To estimate a sparse β in (1) attention has been given
to minimizing sparsity Penalized Least Squares (PLS) objec-
tive functions [7–14]. The least squares term measures the
goodness-of-fit of the estimator while the penalty forces many
of its components to become zero. The most common sparsity
inducing penalties belong to the power family [15] and can be
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characterized using the lq “norm”1, which for 0 < q ≤ 1 is
defined by:

‖β‖q :=

(
m∑
i=1

|βi|q
) 1

q

(2)

The lq penalty considered in the PLS problem is given by
‖β‖qq for 0 < q ≤ 1. Since ‖β‖qq approaches the total number
of nonzero components in β as q → 0+, for q = 0 the lq
penalty is precisely this limit, which we denote by ‖β‖0 and
is more commonly referred to as the l0 “norm”. Indeed, ‖β‖0
is the natural penalty for inducing sparsity. Despite the fact
that it is nonconvex [10, 16] have developed a Majorization-
Minimization (MM) type algorithm for optimizing the corre-
sponding l0 PLS problem when the singular values of X are
strictly less than one. A cyclic descent (CD) algorithm has
been developed in [17] for a related l0 PLS problem.

A convex relaxation of ‖β‖0 is the l1 norm i.e. ‖β‖qq
with q = 1. Due to this favourable property, there have been
numerous methods developed for solving the resulting l1 PLS
problem. We cannot list them all here but a small sample is
[7–9, 11, 18–21]. These methods rely on gradient projection,
fixed point, MM and Iteratively Reweighted Least Squares
(IRLS) procedures.

The natural question to ask is what happens if the l1
penalty is replaced by the lq penalty ‖β‖qq with 0 < q < 1.
It has recently been noted that using nonconvex penalties
such as this can alleviate some of the shortcomings of the l1
norm [22–24]. For example, it is expected that the lq esti-
mator with 0 < q < 1 is sparser and less biased than the l1
estimator [25]. As we will show, the lq penalty also zeroes
out estimator components when 0 < q < 1 but is less aggres-
sive than the l0 penalty, and often performs very well when
the underlying model is very sparse. This was evidenced
in related problems, see [24, 26–28]. The resulting lq PLS
problem is nonconvex, and for some of the methods used for
its optimization see [7, 11, 13, 21]. These rely on MM and
IRLS or fixed point type procedures.

In this paper we provide a novel CD algorithm (lqCD) for
optimizing the lq PLS problem when 0 < q < 1. Optimality
conditions for this problem are also derived and the compet-
ing ones are clarified.

1The lq function is not a norm when q < 1.
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The remainder of the paper is organized as follows. In
Section 2 we state the relation to prior work. Section 3 con-
tains the optimality conditions for the lq PLS problem when
0 < q < 1, while Section 4 gives the lqCD algorithm. Sec-
tion 5 contains the simulations comparing the reconstruction
quality of three penalty functions: l0, l1 and lq , 0 < q < 1.
Section 6 contains concluding remarks.

Notation: sgn(β) is the sign of β if β 6= 0 and 0 otherwise.
ei is the i-th unit vector from the standard canonical basis.
diag(β) is a diagonal matrix with β on the main diagonal.
‖A‖ is the spectral norm of A.

2. RELATION TO PRIOR WORK

2.1. Optimality
Even though existing literature, such as [7, 11–13, 19, 29],
deals with the lq PLS problem, no prior work except [13]
presents optimality conditions for 0 < q < 1. We show that
the MM based conditions in [13] are suboptimal and reduce
to ours only in a special case, see Theorem 4 and Remark 4.

When q = 0, the optimality conditions for the lq PLS
problem have been provided in [10, 16, 17], while for q = 1,
they are given in [9, 11, 20]. In order to derive the corre-
sponding optimality conditions for 0 < q < 1 previous work
cannot be applied. For example, the approach taken in [7]
cannot be extended as it indirectly assumes that the optimal
solution contains only nonzero components, see Remark 3.
The theory in [30] cannot be applied as the objective function
does not satisfy the posed convex type assumptions, while the
analysis in [12] only considers differentiable penalties. Con-
sequently, our derivation is novel and it takes advantage of
features unique to the lq PLS objective function.

2.2. Cyclic Descent (CD)
CD procedures for general objective functions are given in
[31,32], while CD methods that have been explicitly designed
to handle the PLS structure are given in [12, 14, 30]. None of
these CD algorithms can handle the lq PLS problem when
0 < q < 1. For example, even though [12] analyses the
lq penalty and [30] deals with PLS objective functions, both
works including the works in [14,31,32] do not provide a way
to construct CD updates when 0 < q < 1. As a result, our
method is significantly different to those in [12, 30, 31, 33].

3. OPTIMALITY CONDITIONS

From now on it is assumed 0 < q < 1 unless stated other-
wise. Then, the lq PLS problem is:

min
β

J(β) :=
1

2
‖y −Xβ‖22 + λ‖β‖qq (3)

where λ > 0 is a constant penalty parameter. We denote the
columns of X by x1,x2, . . . ,xm and w.l.o.g. column scale
i.e. ‖xi‖2 = 1 for all i ∈ {1, . . . ,m}. Further discussion
requires the non-trivial result:

Theorem 1. Consider the following scalar optimization:

min
β
Jz,λ(β) :=

1

2
(z − β)2 + λ|β|q (4)

Then all its solutions are give by:

τλ(z) =


0 if |z| < hλ

{0, sgn(z)βλ} if |z| = hλ

sgn(z)β if |z| > hλ
where

βλ := [2λ(1− q)]
1

2−q and hλ := βλ + λqβq−1λ

and β > 0 satisfies β+λqβq−1 = |z|. There are two solutions
to this equation and β ∈ (βλ, |z|) is the larger one. It can be
computed from the iteration, β0 ∈ [βλ, |z|]:

βk+1 = ρ(βk) where ρ(β) := |z| − λqβq−1 (5)

Proof. See [27, Theorem 1].
Denote by G the set of global minimizers of J(·). Then

introduce the “adjusted gradient” quantity:

zi = z(β−i) := xTi (y −Xβ−i) (6)

where β−i is β with the i-th component set to zero. We now
give two theorems for deducing the optimality conditions for
the lq PLS problem:

Theorem 2. G ⊆ F where F :=
⋂m
i=1 {β : βi ∈ τλ(zi)}

Proof. See the Appendix.

Theorem 3. (Optimality Conditions) Suppose β∗ ∈ F , and
define Z := {i : β∗i = 0} and Zc := {i : β∗i 6= 0}. Then:

C1: For i ∈ Z , |xTi (Xβ∗ − y)| ≤ hλ

C2: For i ∈ Zc, |β∗i | ≥ βλ

C3: For i ∈ Zc, xTi (Xβ∗ − y) + λq|β∗i |q−1sgn(β∗i ) = 0

Proof. See the Appendix.

Remark 1. By Theorem 2, conditions C1,2,3 are satisfied by
any global minimizer of J(·), and hence are the optimality
conditions for the lq PLS problem.

Remark 2. When q = 0 is directly substituted in, C1,2,3

become the optimality conditions for the l0 PLS problem pro-
vided in [10, 16, 17]. As q → 1−, C1,2,3 approach the opti-
mality conditions for the l1 PLS problem stated in [9, 11, 20].

Remark 3. Let β∗c denote the vector of nonzero components
of β∗ ∈ F only, and let Xc denote the corresponding columns
in X. Using the relation sgn(βi) = βi/|βi| for βi 6= 0, C3

implies:

XT
c (Xcβ

∗
c − y) + λqD(β∗c )β

∗
c = 0 (7)

where D(βc) := diag
(
|β∗c |q−2

)
. The necessary condition

(7) is condition (10) on p.762 in [7] only when Z = ∅. As a
result, the claimed optimality condition in [7] is incorrect in
cases when Z 6= ∅, which occurs in sparse signal estimation.

6069



Theorem 4. Let CCD denote the set of points satisfying the
optimality conditions C1,2,3. Also, let CMM denote the set of
points satisfying the MM based optimality conditions in [13].
Then G ⊆ CCD ⊆ CMM .

Proof. See the Appendix.
It is trivial to verify that Theorem 4 holds without column

scaling X.

Remark 4. From the proof of Theorem 4, CMM depends
on L := ‖XTX‖ and CCD = CMM for L = 1. But, since
‖xi‖2 = 1 for all i, L = 1 if and only if XTX = I. In
general, XTX 6= I, and so, CCD ⊂ CMM which makes CMM

a strictly larger set. Identical reasoning with rescaling can be
applied when X is not column scaled.

Remark 5. The optimality conditions from [13] are de-
rived by considering the MM algorithm for the lq PLS prob-
lem. By Theorem 4 and Remark 4, they in general form a
strictly larger set around the global minimizers than condi-
tions C1,2,3. Hence our conditions are “tighter”.

4. THE ALGORITHM

The lqCD algorithm is summarized in the table below:

The lqCD Algorithm
For i = 1, 2, . . . ,m, 1, 2, . . . ,m, . . . repeat (1)-(3):

(1) Let β be the current iterate

(2) Calculate zi = z(β−i) and choose β+
i ∈ τλ(zi)

(3) The next iterate becomes β+ = β−i + β+
i ei.

Theorem 5. If β and β+ are the current and the next iterate
of the lqCD algorithm respectively then J(β+) ≤ J(β).

Proof. See the Appendix.

5. SIMULATIONS

Here we compare the quality of estimators β̂ obtained by op-
timizing the lq PLS problem with 0 ≤ q ≤ 1. For q = 0
and q = 1 the CD algorithms from [17] and [14] were used
respectively. The aim is to reconstruct a signal β of length
m = 256 from n = 100 observations. This signal has 24
randomly placed ±1 spikes. The observations y is generated
according to (1) where the noise is i.i.d. Gaussian with mean
zero and variance σ2. Matrix X is filled with independent
samples of the Gaussian distribution and its columns are then
orthonormalized.

Letting MSE := ‖β−β̂‖2/m, the values of (q, λ) used to
generate Fig.1 correspond to the minimum MSE for the given
σ2. Next, Fig.2 shows contour plots of the average MSE over
20 trials for each (q, λ) considered. In Fig.’s 2 and 3, it can
clearly be seen that the (optimal) values of q that minimize
the MSE strongly depend on the noise level (σ2).

Fig. 1. Examples of J(β) vs. no. of iterations. All algorithms are
initialized with β = ‖XTX‖−1XTy. FOCUSS is from [7], ISoft
and IRS1 are from [11], and MM is from [13]. MM is very similar
to IST from [11]. To be consistent, updating all components in β
denotes a single iteration for all algorithms. The stepsize used in
ISoft, IRS1 and MM corresponds to the Lipschitz constant ‖XTX‖.
In (a) q = 0.5 (b) q = 0.1, it is interesting to see that lqCD and
MM do not converge to the same value of J(·), which we confirm
by comparing J(·) after 200 iterations. This happens due to severe
nonconvexity, but lqCD achieves a lower value of J(·).

Fig. 2. Av. MSE contour plots for different σ2 as a function of
(q, log10(λ)). The white circle is the location of the min. av. MSE.
We see that as σ2 varies so does the (optimal) value of q. As σ2 rises
so does the optimal q.

6. CONCLUSION

We developed a novel CD algorithm for optimizing the lq PLS
problem (0 < q < 1), and derived the corresponding optimal-
ity conditions. The set of these contains all the global mini-
mizers but is a subset of the MM based conditions, and so, is
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Fig. 3. Min. av. MSE and the corresponding (optimal) value of q
as functions of log10(σ

2). These values of 0 < q < 1 correspond to
those in Fig.2 indicated by the white circle.

Fig. 4. Example comparing β (original signal) and av. recon-
structions β̂ (over 20 runs) by optimizing the lq PLS problem when
σ2 = 2.5 × 10−2. Min. av. MSE is achieved with q = 0.7, and
we see that the corresponding β̂ best approximates β compared to β̂
with q = 0 and q = 1.

tighter. Simulations at varying noise levels show that q with
0 < q < 1 generally improves on q = 0 or q = 1.

7. APPENDIX

Proof of Theorem 2: By simple linear algebra, separability
of ‖ · ‖qq and using zi in (6), we have:

J(β) = J(β−i + βiei)

(3)
=

1

2
‖βixi − (y −Xβ−i)‖22 + λ‖β−i‖qq + λ|βi|q

= J(β−i) +
1

2
β2
i − ziβi + λ|βi|q

(4)
= J(β−i)−

1

2
zi + Jzi,λ(βi)

≥ J(β−i)−
1

2
zi +min

β
Jzi,λ(β) (8)

= J(β−i + τλ(zi)ei)

The last equality in the above holds by Theorem 1. For
β = β0 ∈ G we have zi = z0i . Also, there must be an
equality in (8) implying β0

i ∈ τλ(z
0
i ). This holds for any

i ∈ {1, . . . ,m}.

Proof of Theorem 3: For a particular i ∈ {1, . . . ,m} we ex-
amine cases, noting that by (6) we have z∗i = xTi (y−Xβ∗−i).

If i ∈ Z , then by the fact that β∗i ∈ τλ(z
∗
i ) we have

|z∗i | ≤ hλ. Hence, by z∗i and the fact that β∗−i = β∗ we
obtain C1.

If i ∈ Zc, then again by the fact that β∗i ∈ τλ(z∗i ) we have
|zi| ≥ hλ. If |z∗i | = hλ then |β∗i | = βλ. If |z∗i | > hλ then by
Theorem 1, |β∗i | satisfies:

|β∗i |+ λq|β∗i |q−1 = |z∗i | (9)

Define f(x) := x + λqxq−1 for x > 0, and notice f ′(x) =
1− λq(1− q)xq−2. Hence, f ′(x) > 0 iff x > β′λ := [λq(1−
q)]

1
2−q , and so, f(x) is strictly increasing for x > β′λ. So,

since βλ > β′λ, for f(|β∗i |) = |z∗i | > hλ we have |β∗i | > βλ,
establishing C2.

Lastly, by Theorem 1 for i ∈ Zc note that sgn(z∗i ) =
sgn(β∗i ) 6= 0. Using this as well as z∗i , (9) becomes:

(z∗i − β∗i )sgn(β∗i )− λq|β∗i |q−1 = 0

⇔
{
xTi (y −Xβ∗−i)− β∗i

}
− λq|β∗i |q−1sgn(β∗i ) = 0

⇔ xTi (Xβ∗ − y) + λq|β∗i |q−1sgn(β∗i ) = 0

establishing C3.

Proof of Theorem 4: G ⊆ CCD holds by Remark 1. Next,
using our notation, let β∗ ∈ G. We have L := ‖XTX‖, and
by using Proposition 3.14 (b) and (c), together with Lemma
4.1 both in [13], the optimality conditions from [13] are:

C′1: For i ∈ Z , |xTi (Xβ∗ − y)| ≤ L
1−q
2−q hλ

C′2: For i ∈ Zc, |β∗i | ≥ L
− 1

2−q βλ

C′3: For i ∈ Zc, xTi (Xβ∗ − y) + λq|β∗i |q−1sgn(β∗i ) = 0

Having ‖xi‖22 ≤ ‖XTX‖ and ‖xi‖2 = 1 implies L ≥ 1.
So, suppose β ∈ CCD and consider any i ∈ {1, . . . ,m}. If
C1 holds, since hλ ≤ L

1−q
2−q hλ implies C′1 holds. Also, if C2

holds, since βλ ≥ L−
1

2−q βλ implies C′2 holds. Lastly, C3 and
C′3 are equal, so β ∈ CMM and the result follows.

Proof of Theorem 5: Expression (8) becomes: J(β−i +
β+
i ei) where β+

i ∈ τλ(zi) by Theorem 1. The result follows
since β+ = β−i + β+

i ei.
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