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 Abstract - The discrete fractional Fourier transform 
(DFRFT) depends heavily on the availability of Hermite-
Gaussian-like (HGL) orthonormal eigenvectors of the DFT 
matrix F. The direct batch evaluation by constrained 
optimization algorithm (DBEOA) was developed under the 
assumption that the orthogonal projection of the approximate 
eigenvectors on the corresponding eigenspaces results in linearly 
independent vectors. The present paper handles the case when 
those vectors are not linearly independent which happens when 
the order N of matrix F is large. A more general treatment of the 
batch generation of HGL eigenvectors is presented and the 
notion of matrix pseudoinverse is used for solving the linear 
system which arises in the solution of the constrained 
optimization problem. The contributed technique is termed the 
Direct Batch Evaluation by constrained Optimization Algorithm 
using the notion of matrix Pseudoinverse (DBEOAP). The 
simulation results show that the DBEOAP results in smaller 
values of the norms of the approximation error vectors than 
those obtained when applying the DBEOA. 
 
Index Terms: Discrete fractional Fourier transform (DFRFT), 
Hermite-Gaussian-like (HGL) eigenvectors, DFT matrix, 
singular value decomposition (SVD), matrix pseudoinverse. 
 

I. INTRODUCTION 
 

 The discrete fractional Fourier transform (DFRFT) has emerged 
as a discrete counterpart of the fractional Fourier transform (FRFT). 
The latter is a generalization of the continuous-time Fourier 
transform and can be viewed as a representation of a signal along an 
arbitrary axis in the time-frequency plane making an angle   with 
the time axis where   is related to the order a  of the fractional 
transform by 

a  5.0   . (1) 

The kernel matrix aF  of the DFRFT is defined by1 [1]: 
 

Haa UDUF ˆˆ . (2) 

                                                           
This work was financially supported by the Science and Technology 
Development Fund (STDF), Egypt under Grant No. 2091 Basic and 
Applied Research. 
1 The superscripts T , * , H respectively denote the transpose, the 
complex conjugate and the Hermitian transpose (i.e. the complex 
conjugate transpose). 

This definition is based on having a modal decomposition of the DFT 
matrix F expressed as: 
 

HUDUF ˆˆ  (3) 

where Û  is a unitary modal matrix of F and D is a diagonal matrix 
having the eigenvalues on its main diagonal. Since the DFRFT has 
been developed as a computational machinery for the FRFT, it 
should approximate its analog counterpart. Since the Hermite-
Gaussian functions are the eigenfunctions of the FRFT, it is highly 
desirable that the eigenvectors of matrix F - which are also 

eigenvectors of matrix aF  - be as close as possible to samples of the 
Hermite-Gaussian functions. Candan et al. [2] developed 
orthonormal eigenvectors of matrix F by a block diagonalization of a 
nearly tridiagonal matrix S which commutes with matrix F. Their 
work has been put on a more rigorous foundation by Hanna, Seif and 
Ahmed [3]. Pei, Yeh and Tseng [4] looked at the eigenvectors of 
matrix S as only initial ones and looked for superior ones - in the 
sense of better approximating samples of the Hermite-Gaussian 
functions - by applying either the gram-Schmidt algorithm (GSA) or 
the orthogonal procrustes algorithm (OPA). Hanna, Seif and Ahmed 
developed a third technique, namely the sequential orthogonal 
procrustes algorithm (SOPA) for the same purpose [5]. Moreover 
they arrived at an implementation of the GSA, OPA and SOPA based 
only on the orthogonal projection matrices on the eigenspaces of 
matrix F without having to first generate initial eigenvectors [6]. 
 
 A direct attack on the problem of the sequential generation of 
Hermite-Gaussian-like eigenvectors of matrix F resulted in 
developing the Direct Sequential Evaluation by constrained 
Optimization Algorithm (DSEOA) [7]. Similarly a direct attack on 
the problem of the batch generation of the desirable optimal 
eigenvectors resulted in developing the Direct Batch Evaluation by 
constrained Optimization Algorithm (DBEOA) [8]. In the 

development of the DBEOA, a square Hermitian matrix 2W  
emerged - as will be delineated in Section II - and matrix W was 

needed in order to generate the orthonormal matrix kÛ  whose 

columns form the desired optimal basis of the kth eigenspace of 

matrix F. Matrix 2W  was taken for granted to be nonsingular and 
the DBEOA depended on first finding W and next finding its inverse. 
 
 The main objective of the present paper is to deal with the 

degenerate case when 2W  is singular since for large values of the 
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order N of the DFT matrix F, matrix 2W  becomes at least 
algorithmically singular. The notion of the Moore-Penrose matrix 
pseudoinverse will be utilized for finding the optimal Hermite-
Gaussian-like (HGL) eigenvectors of F. 
 
 In section II the batch generation of optimal HGL eigenvectors 
will be delineated and in section III matrix W will be evaluated and 
the notion of pseudoinverse will be resorted to for the sake of finding 
the target orthonormal matrix of eigenvectors for each eigenspace 
separately. In section IV some simulation results will be presented 
demonstrating the need for the contributed Direct Batch Evaluation 
by constrained Optimization Algorithm using the notion of matrix 
Pseudoinverse (DBEOAP). 
 

II. Batch Generation of Optimal Eigenvectors 
 

 Let kr  be the dimension of the kth eigenspace kE  of the DFT 

matrix F of order N pertaining to the eigenvalue 4,,1 , kk . 

(Matrix F has only 4 distinct eigenvalues). Let kÛ  be the target 

optimal krN x  matrix whose columns are orthonormal basis of kE  

and let kU  be the corresponding matrix whose columns are 

approximate (since they are not exact) but desirable (since they have 
the key feature of being samples of the Hermite-Gaussian functions) 
eigenvectors of F pertaining to k . The unitarity of F implies the 

orthogonality of the eigenspaces 4,,1 , kEk  and consequently 

the problem of generating optimal orthonormal eigenvectors of F 
decouples into 4 separate problems. 

 Given matrix kU , matrix kÛ  will be evaluated by minimizing 

the square Frobenius norm: 
 

2

FaJ kk UU


  (4) 

 
subject to the constraints: 
 

  0UIF k 


k  (5) 

and 
 

0IUU
krk

H
k 


 (6) 

Constraint (5) guarantees that the columns of kÛ  are eigenvectors of 

F and constraint (6) guarantees their orthonormality. It was shown 
that the solution of this constrained optimization problem is given by 
[8]: 
 

kk UWU
~




 (7) 

 
where 
 

kkk UPU 
~

 (8) 

 
with kP  being the orthogonal projection matrix on the kth eigenspace 

of F given explicitly in [5]. It was also shown that the square matrix 
W of order kr  appearing in (7) is Hermitian and satisfies: 

 

k
H
k

2 UUW
~~

 . (9) 

In order to solve the linear system (7), one has to first evaluate matrix 

W based on the availability of 2W . 
 

III. MATRIX W AND ITS PSEUDOINVERSE 
 

 The singular value decomposition (SVD) of the known matrix 
2W  is given by: 

 
H2 TTW   (10) 

 
where T is a unitary matrix and   is a diagonal matrix that can be 
expressed as: 
 











00

0
kp . (11) 

In the above equation the diagonal matrix 
kp  is given by: 

  
kpkp ddDiag ,,1   (12) 

 
where 021 

kpddd  . For the sake of generality it has 

been assumed that the krN x  matrix kU
~

 has rank kp  where 

kk rp  . Since matrix 2W  defined by (9) has the same rank kp  of 

matrix kU
~

, its SVD has the peculiar form portrayed by (10)-(12). 

 It should be mentioned that although (10) can be viewed as an 

eigenvalue decomposition of the Hermitian matrix 2W , one is 

advised to apply the SVD because if 2W  has a repeated eigenvalue, 
an eigendecomposition routine available in a general software 
package is not guaranteed to generate orthogonal eigenvectors 
corresponding to a repeated eigenvalue. The family of square roots of 
(10) is given by: 
 

HTSTW   (13) 
 
where 
 











00

0
kpS

S  (14) 

and 
 

 
kpddDiag  ,,1 

kpS . (15) 

 
 The minimum-norm solution of the linear system (7) is given by: 
 

†~ˆ WUU kk   (16) 

where †W  is the Moore-Penrose pseudoinverse of W given by [9]: 
 

H
kp T

S
TW 







 


00

01
† . (17) 
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 Equation (15) implies the existence of kp2  solutions. In order to 
single out the unique solution which minimizes criterion (4), one 
starts by expressing the latter in the form: 
 

  bka JrtrJ  k
H
k UU  (18) 

where 
 

  k
H
k UU


trJb Real 2 . (19) 

In the above equation   tr  is the trace of a matrix and  Real  

denotes the real part. The fact that W is Hermitian implies that †W  
is Hermitian and consequently (16) and (8) result in: 
 

k
H
k

H
kk

H
kk

H
k UPUWUUWUU †† ~ˆ  . (20) 

 
Since the orthogonal projection matrix kP  is both Hermitian and 

idempotent, (8) and (9) result in: 
 

2
kk

H
k

H
kk

2
k

H
kkk

H
kk

H
k

H
k WUPPUUPUUPUUPU   (21) 

 
 Substituting (21) in (20) and utilizing (10), (11) and (17), one 
gets: 
 

H
kpkp2

k
H
k T

S
TWWUU 







 




00

0ˆ
1

† . (22) 

 
Utilizing the properties of the trace of a matrix and using (12) and 
(15), one gets: 
 

      


 kp

i
idtrtr

1

1ˆ
kpkpk

H
k SUU . (23) 

 
The above equation implies that the unique matrix 

kpS  out of the 

family of (15) which maximizes criterion (19) - and consequently 
minimizes criterion (4) - is given by: 
 

 
kpddDiag ,,1 

kpS . (24) 

 
 Based on the above findings, the Direct Batch Evaluation by 
constrained Optimization Algorithm using the notion of matrix 
Pseudoinverse (DBEOAP) can be summarized in the following steps: 
 

1. Form matrix 2W  as  kk
H
k

2 UPUW  . 

2. Find the SVD of 2W  as given by (10) and (11). 

3. Compute †W  according to (17) where 
kpS  is given by (24). 

4. Evaluate kÛ  as   †WUPU kkk 


. 

 
 It remains to discuss the numerical evaluation of the rank kp  of 

matrix W. Upon finding the SVD of matrix 2W  as given by (10)-
(12), the diagonal elements of   are arranged in descending order as 

021 
kr

ddd  . A singular value which is theoretically 

zero, will numerically be found to be negligibly small rather than 
being zero. One should set a threshold such that singular values equal 
to or below it will be regarded zeros. This threshold is given by: 
 

mtolepsdrthreshold k  *  *  * 1  (25) 

 
where eps  is the built-in MATLAB constant called the floating-
point relative accuracy defined as the distance from 1.0 to the next 

larger double-precision number2 ,i.e.   01622.252^2  eeps . 

The arbitrary multiplying factor mtol  appearing in (25) has been 
introduced in order to allow the user more flexibility in coping with 
the numerically challenging rank determination problem. As a rule of 
thumb it has been found after tedious experimentation that the value 

0061emtol   suffices in most cases. 
 
 The contributed DBEOAP is general since it applies to the case 

of a rank-deficient krN x  matrix kU
~

 having rank kp  where 

kk rp  . The previously published DBEOA [8] corresponds to the 

full-rank case characterized by kk rp   where there is no need for 

the notion of the pseudoinverse. Consequently the contributed 
DBEOAP is a generalization of the DBEOA. 
 

IV. SIMULATION RESULTS 
 

 The contributed DBEOAP has been applied for generating HGL 
eigenvectors of matrix F of orders 128 ,64 ,32 ,16N . In each 

case the rank of matrix 2W  for each of the four eigenspaces has 
been found to equal the dimension of that space, i.e. 

4,,1 ,  krp kk . However for larger values of N, it has been 

found that kk rp  . Table 1 shows the discrepancy between kr  and 

kp  for the four eigenspaces for 2048 ,1024 ,512 ,256N . This 

testifies to the need for contributing the DBEOAP for the rank-
deficient case in contrast to the DBEOA which should be only used 
for the full-rank case. Figure 1 shows a plot of the norm of the 
approximation error vectors   ,N,m 1 , ˆ  mmm uue  between 

the exact and approximate eigenvectors of matrix F of order 
1024N when the DBEOAP and DBEOA are applied. The spiky 

appearance of the plot of the DBEOA is due to treating matrix 2W  
as nonsingular although it is at least algorithmically singular. 
 

V. CONCLUSION 
 

 The direct batch evaluation technique of optimal HGL 
eigenvectors of the DFT matrix F has been generalized to handle the 

case of a rank-deficient matrix kU
~

 whose columns are the 

orthogonal projection of the approximate eigenvectors on the 
corresponding eigenspace. The notion of matrix pseudoinverse has 
been used in evaluating the target HGL eigenvectors. The simulation 
results testify to the numerical superiority of the contributed 
DBEOAP to the DBEOA which should be applied solely in the full-
rank case. 

                                                           
2 Here the MATLAB notation is used where 016e  stands for 

 16^10  . 

6065



 

Table 1: The discrepancy between the dimensions of the eigenspaces of the DFT matrix and the rank of matrix W2. 
 

N 
Serial number k  of the 

eigenspace 
Dimension kr  of the kth  

eigenspace 
Rank kp  of matrix W2 

256 

1 65 63 
2 64 62 
3 64 62 
4 63 61 

512 

1 129 121 
2 128 120 
3 128 121 
4 127 120 

1024 

1 257 239 
2 256 238 
3 256 238 
4 255 237 

2048 

1 513 458 
2 512 458 
3 512 458 
4 511 457 
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Fig. 1: The norm of the approximation error vectors   ,N,m 1 , ˆ  mmm uue  between the exact and approximate 

eigenvectors of the DFT matrix F using the DBEOA and DBEOAP for N = 1024.
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