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ABSTRACT

We propose a maximum likelihood estimation approach for

the recovery of continuously-defined sparse signals from

noisy measurements, in particular periodic sequences of

derivatives of Diracs and piecewise polynomials. The con-

ventional approach for this problem is based on total-least-

squares (a.k.a. annihilating filter method) and Cadzow de-

noising. It requires more measurements than the number of

unknown parameters and mistakenly splits the derivatives

of Diracs into several Diracs at different positions. Further

on, Cadzow denoising does not guarantee any optimality.

The proposed parametric approach solves all of these prob-

lems. Since the corresponding log-likelihood function is non-

convex, we exploit the stochastic method of particle swarm

optimization (PSO) to find the global solution. Simulation

results confirm the effectiveness of the proposed approach,

for a reasonable computational cost.

Index Terms— signals with finite rate of innovation,

derivative of Diracs, piecewise polynomials, maximum like-

lihood estimation, Cadzow denoising

1. INTRODUCTION

Sampling sparse signals defined in continuous or discrete do-

main is attracting great interest, as can be seen from the huge

amount of publications on the topic, see e.g. [1, 2, 3, 4, 5,

6, 7]. The reconstruction of sequences of Dirac distributions

(Diracs, in short) lies at the heart of the theories formulated

for analog signals, because simple convolutions of such se-

quences with particular kernels creates a wide variety of sig-

nals of practical interest. An even larger class of signals is

generated by convolutions from sequences of derivatives of

Diracs, including the important cases of piecewise polynomi-

als and piecewise sinusoids with discontinuities [1, 8].

Let δ(t) denote the Dirac mass distribution and τ be a

positive real. This paper focuses on a τ -periodic sequence of

derivatives of Diracs, expressed as s(t) =
∑

k′∈Z
s0(t−k′τ),

where
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s0(t) =

K−1∑
k=0

Rk−1∑
r=0

ck,rδ
(r)(t− tk),

for some known integers K ≥ 1 and {Rk}K−1
k=0 . This signal

has K degrees of freedom due to the time instants {tk}K−1
k=0

and K̃ =
∑K−1

k=0 Rk degrees of freedom due to the coeffi-

cients {ck,r}, per period τ . Thus, the rate of innovation of the

signal is ρ = (K + K̃)/τ < ∞. The signal s(t) is sampled

using an appropriate kernel, like the Dirichlet kernel [1] or a

sum-of-sincs [4]. Then, the sequence can be perfectly recon-

structed from the noiseless measurements using the annihilat-

ing filter technique [1]. This technique, however, requires at

least 2K̃+1 measurements, which is more than the number of

unknown parameters K + K̃. Having the minimum possible

number of samples while maintaining a possible reconstruc-

tion is crucial, for instance if each measurement is very costly

(financially or in time). If the measurements are corrupted

by noise, the annihilating filter approach, a.k.a. total least

squares (TLS), whose detailed description is in [3] yields K̃
instead of K locations. Also, this method does not give sat-

isfactory results, so that preprocessing is necessary. For that,

Cadzow denoising [9] is the standard approach [3]; it is easy

to implement but does not guarantee any optimality.

To solve these problems, we propose a method that re-

constructs the signal using maximum likelihood estimation,

as is in [10, 11]. The corresponding likelihood function is

non-convex. Hence, to find the global solution, we exploit a

heuristic approach called particle swarm optimization (PSO)

[12]. The proposed method can perfectly reconstruct the sig-

nal from less than 2K̃ + 1 measurements, whereas the con-

ventional approach is not applicable in this situation.

This paper is organized as follows. In Section 2 we

describe the sampling setup using the sum-of-sincs kernel

and formulate maximum likelihood reconstruction of the

sequence of derivatives of Diracs. Section 3 extends our

approach to periodic piecewise polynomials.

2. SEQUENCE OF DERIVATIVE OF DIRACS

The τ -periodic sequence of derivatives of Diracs s(t) is sam-

pled using a kernel ψ(t) and yields N noiseless measurements
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dn = 〈s, ψn〉 =
∫∞
−∞ f(t)ψ(t− nT )dt, for n = 0, . . . , N−1

and T = τ/N . We adopt for ψ(t) the sum of sincs (in the

Fourier domain) kernel [4], which is defined in time domain

by

ψ(t) =
rect(t/τ)

τ

P∑
p=−P

bpe
i2pπt/τ , (1)

where rect(t) = 1 if |t| ≤ 0.5 else 0 and P ≤ (N − 1)/2 is

an integer. By setting bp = 1 for all p, this kernel reduces to

the standard Dirichlet kernel. Let d̂p = 1
τ

∫ τ

0
s(t)e−i2pπt/τdt

be the Fourier coefficients of s. Then, it follows from (1) that

dn =

P∑
p=−P

bpd̂pe
i2pnπ/N . (2)

This admits the matrix representation d = F−1Bd̂, where B
is the diagonal matrix diag(b−P , . . . , bP ) and F is the dis-

crete Fourier transform (DFT) matrix, defined accordingly.

We can derive the Fourier coefficients of s(t) as d̂p =∑K−1
k=0

∑Rk−1
r=0 c̃k,rpu

p
k, where uk = e−i2πtk/τ , c̃k,r =

(i2π)rck,r/τ
r+1. Let Ut and c be the matrix and the vector

defined respectively as

Ut =

⎛
⎜⎜⎜⎝

u−P
0 · · · (−P )Ru−P

K−1

u−P+1
0 · · · (−P + 1)Ru−P+1

K−1
...

. . .
...

uP
0 · · · (P )RuP

K−1

⎞
⎟⎟⎟⎠ ,

c = (c̃0,0 c̃0,1 · · · c̃K−1,R−1)
T .

Then, we have d̂ = Utc and therefore,

d = F−1BUtc. (3)

The clean measurements {dn}N−1
n=0 are corrupted by addi-

tive noise, yielding the noisy measurements yn = dn + en,

for n = 0, . . . , N − 1. We have to estimate the unknowns

{tk}K−1
k=0 and {ck,r}K−1

k=0,
Rk
r=0 as precisely as possible from the

data {yn}N−1
n=0 . To this end, we exploit the formalism of max-

imum likelihood estimation. Let y and e be vectors whose n-

th elements are yn and en, respectively: y = d+ e. Assume

that the probability density function p(e) is known. Then us-

ing (3), we can define the log-likelihood function as L(t, c) =
log p(y−F−1BUtc), where t = [t0 t1 · · · tK−1]

T. The most

standard model of p(e), which we also adopt in this paper, is

the Gaussian distribution with zero mean and covariance ma-

trix σ2I , where σ is a known positive real and I is the identity

matrix. Then, the log-likelihood function reads

L(t, c) = −‖y − F−1BUtc‖2
2σ2

+Constant. (4)

This implies that the maximization of the log-likelihood

function is equivalent to the minimization of the norm
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Fig. 1. Mean square errors (MSE) of estimated parameters

for t and c with respect to the number of measurements with

20dB noise. The red, blue and black lines show the results

by the proposed method, by TLS with and without Cadzow

denoising, respectively.

‖y − F−1BUtc‖2. Further on, F is unitary up to constant.

Hence, this minimization is equivalent to that of

fo(t, c) = ‖ŷ −BUtc‖2, (5)

where ŷ = Fy. Thus, maximum likelihood estimation

amounts to estimating the vector BUtc, which is the closest

to ŷ in the least-squares sense, in Fourier domain.

Eqn. (5) is quadratic with respect to c, when t is fixed.

Therefore, the optimal c for a fixed t is obtained analytically

as c = (BUt)
†ŷ, where T † stands for the Moore-Penrose

generalized inverse of the bounded operator T [13]. Hence,

the minimizer of fo(t, c) is found by searching t that mini-

mizes

f(t) = fo(t, (BUt)
†ŷ) = ‖ŷ − (BUt)(BUt)

†ŷ‖2,

and then by computing c = (BUt)
†ŷ.
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Fig. 2. MSE of estimated parameters for t and c with respect

to the SNR in dB. The legends are the same as in Fig. 1.

The criterion f(t) is non-convex and it is very difficult

to find the global minimum solution. We thus exploit the so-

called particle swarm optimization (PSO) algorithm [12]. The

particles model the parameter t to be optimized. For each

particle j = 1, ..., J , we first initialize the position tj and

its velocity ṫj with uniformly distributed random vectors in

the domain. We use the particle’s and swarm’s best known

positions b
(p)
j and b(s), which are initialized by tj and the best

among the initial positions, respectively. Until a termination

criterion is met, the particle’s velocity ṫj and position tj are

updated by wṫj + c1r1(b
(p)
j − tj) + c2r2(b

(s)− tj) and tj +

ṫj , respectively, where c1, c2 are pre-defined constants near

1 and r1, r2 are uniform random variables within 0 and 1. If

f(tj) < f(b
(p)
j ), then b

(p)
j is updated by tj . If f(b

(p)
j ) <

f(b(s)), then b(s) is replaced by b
(p)
j . Finally, b(s) gives the

best found solution. Because of its global and random nature,

PSO is more robust than gradient approaches, against getting

trapped in local minima. The downside is a relatively high

computational cost.

In simulations, the parameters are set as τ = 1, bp = 1,

K = 2, and R0 = R1 = 2. The unknown parameters are

t = (t0, t1) = (0.19, 0.63), and c = (c0,0, c0,1, c1,0, c1,1) =
(−0.80, 0.65,−1.50, 0.85). For PSO, we used J = 150
particles and (w, c1, c2) = (0.4, 0, 9, 0.4), (0.9, 0.4, 0.4) and

(0.4, 0.4, 0.9) for 75, 45 and 30 particles, respectively. The

proposed method requires a number of measurements more

than or equal to K + K̃ + 1 = 7, while the conventional

method needs at least 2K̃ + 1 = 9 measurements. To see

this difference, we reconstructed the sequence of derivative

of Diracs from various numbers of measurements, from 7, to

15. The noise level was chosen so that the SNR is 20dB1. For

each experiment, we computed estimates t̂ and ĉ of t and c,

for 1,000 different noise realizations. Accordingly, the mean

square errors (MSE) MSE(t) and MSE(c) were defined as

the average over the 1,000 trials of ‖t̂ − t‖2 and ‖ĉ − c‖2,

respectively. The results are shown in Fig. 1, see the caption

for details. We can see that the proposed method outperforms

the conventional methods for every number of measurements.

Note that the TLS approach cannot be applied to the case of

seven measurements, while the proposed method performs

the best in this case for the estimation of c. In Fig. 2, we

show the behavior of the MSE with respect to the SNR; here,

the number of measurements is fixed to N = 13. Again,

the proposed method performs better than the conventional

approaches, whatever the SNR.

3. PERIODIC PIECEWISE POLYNOMIALS

For every k = 0, . . . ,K − 2, let us define the function ϕk(t)
as

ϕk(t) =

{
vk(t) (tk < t < tk+1),
0 (otherwise),

and the function ϕK−1(t) as

ϕK−1(t) =

⎧⎨
⎩

vK−1(t+ τ) (0 ≤ t < t0),
vK−1(t) (tK−1 < t < τ),

0 (otherwise),

where vk(t) =
∑R

r=0 αk,rt
r. Then, a τ -periodic piece-

wise polynomial s(t) of degree R is defined by s(t) =∑
k′∈Z

s0(t − k′τ), with s0(t) =
∑K−1

k=0 ϕk(t). The avail-

able samples are inner products 〈s, ψn〉 corrupted by noise.

Eqn. (2) still holds for this kind of signal.

The R+1th derivative of s(t) is a sequence of derivatives

of Diracs. Hence, the classical approach consists in first es-

timating this sequence and then reconstructing the piecewise

polynomial by integration. In this section, we show how to

directly estimate the piecewise polynomial, without recasting

the problem as the estimation of a sequence of derivatives of

Diracs. Let us introduce the vector α = [α0,0 · · · αK−1,R]
T

1The SNR is defined by 10 log10

∑N
n=1 dn

2

σ2N
.
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Fig. 3. MSE of estimated parameters for t and α. The legends

are the same as in Fig. 1.

and the matrix Φt = BDVtWt, where

D =

⎛
⎜⎝

0

ωdiag
(

1
(−P )R+1 ,

1
(−P+1)R+1 , . . . ,

1
PR+1

)
1

0

⎞
⎟⎠ ,

Vt =

(
Ut 0
0T 1

)
, ω = (τ/i2π)R+1, 0 denotes the zero

vector, and Wt is a mapping from α to c (see [14] for details).

Note that the relation of differentiation was implicitly used in

these formulas. We then have d = F−1Φtα. Therefore,

the log-likelihood function is defined similarly as in (4) and

its maximization is equivalent to the minimization of ‖ŷ −
Φtα‖2. We find the minimizer of this term by searching t

minimizing ‖ŷ − ΦtΦ
†
t ŷ‖2, and then calculating α = Φ†

t ŷ.

The search of the minimizer was again conducted by PSO.

The performance of the proposed method was evaluated

by simulations. The target signal is a τ = 1-periodic piece-

wise polynomial of degree R = 1 with K = 2 disconti-

nuities. The unknown parameters are t = (0.20, 0.65) and

α = (α0,0, α0,1, α1,0, α1,1) = (−1.00,−3.00, 2.00, 4.00).
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Fig. 4. A simulation example with K = 4 and R = 2. The

black line shows the target signal and the red circles and black

dots are measurements with and without 20dB noise. The

red and blue lines are reconstructed signals by the proposed

method and TLS with Cadzow denoising, respectively. The

small figure in the top left corner shows the entire shape of

the blue line.

We reconstructed the signal from 7, 9, . . ., 15 measurements

with 20dB noise. The estimation errors MSE(t) and MSE(α)
were obtained by averaging ‖t̂ − t‖2 and ‖α̂ − α‖2 over

1,000 noise realizations, respectively. The results are shown

in Fig. 3, with the same legends as in Fig. 1. We can see that

the proposed method outperforms the conventional methods

in all cases. A simulation example with K = 4, R = 2, and

N = 25 is shown in Fig. 4. We can see that the proposed

method gives much better results than the classical approach.

We should note that N = 25 is the minimum for the clas-

sical approach and the proposed method can reconstruct the

signal from fewer samples. It took 19.12s for the proposed

method to reconstruct the signal, while TLS with Cadzow de-

noising required 0.06s only, but Matlab is far from optimal

for the implemention of algorithms like PSO, whose potential

for parallelization is not exploited at all.

4. CONCLUSION

We proposed a maximum likelihood estimation method for

the recovery of periodic sequences of derivatives of Diracs

and piecewise polynomials. The method is able to recon-

struct the signals from a number of measurements equal to the

number of unknown parameters, while the conventional ap-

proaches are not applicable in that case. Future work includes

further performance analyses of the proposed method, com-

parison with other stochastic optimization methods [15, 16]

and the calculation of the Cramér-Rao bounds for periodic

case [17]. A Matlab implementation of the proposed method

will be available online at http://sip.csse.yamaguchi-u.ac.jp.
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