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ABSTRACT

This paper introduces Golay sequence for partial Fourier and
Hadamard compressive imaging. In the proposed system, the signal
is pre-modulated by a binary Golay sequence before applying a
random subsampled Fourier or Hadamard transform. The correp-
sonding sampling operator has been proved to be incoherent with
the (block) DCT or the Haar wavelet transform. Empirical results
show that they are also incoherent with the Daubechies wavelets.
It is well known that natural images are sparse in the DCT and the
wavelet basis. Hence, the proposed sampling operators are promis-
ing in many Fourier or Hadamard compressive imaging applications.
In fact, they can achieve near-optimal reconstruction performance
with small memory requirement and simple hardware implemen-
tation. Some simulation results and proof-of-concept experimental
results are included to demonstrate the validity of the theory and the
potential of the proposed sampling operators.

Index Terms— Compressed sensing, Fourier transform, DCT,
Hadamard matrix, Golay sequence.

1. INTRODUCTION

Over the past few years, there have been increased interests in the
study of compressive imaging, in which the total number of mea-
surements is much smaller than that of pixels in the reconstructed
image [1,2]. These systems hold great potential for dramatic reduc-
tion of sampling rates, imaging time, power consumption and com-
putational complexity for applications such as magnetic resonance
imaging (MRI) [3] and shortwave infrared imaging [4] etc. Con-
sider an image with N-pixels in total and let x represent its vector
version. The non-adaptive measurement process can be described
as [5,6]

y=%®x+e, M
in which y represents an M x 1 (M < N) sampled vector, ® is an
M x N measurement/sensing matrix, and e is a noise vector. The
reconstruction of x from y replies on the assumption that x has a
sparse representation under a certain transform ¥, i.e., f = ¥x can
be approximated by K < N coefficients [5, 6]. For natural images,
popular choices of ¥ include the DCT and the wavelet transform. It
is known that stable recovery of x can be achieved if ® is incoherent
with U, In particular, when @ is a full random Gaussian or Bernoulli
operator, it is incoherent with any ¥. Thus, x can be recovered from
O(K log(N/K)) measurements stably.

For large-scale compressive imaging applications, fast com-
putable ® is often preferred. Due to wide applications of Fourier
and Hadamard imaging systems, many people have investigated the
use of partial FFT or the Walsh-Hadamard transform (WHT). Al-
though these operators work well for signals in the canonical basis
(i.e., ¥ = I), they lack universality. To address this issue, ran-
domized partial FFT or WHT have been developed [7, 8], in which
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the signal is pre-processed through either random permuatation or
random sign flipping.

In this paper, we propose to use deterministic binary Golay se-
quence to pre-modulate the signal before applying partial FFT or
WHT. It can be viewed as a derandomized version of the random
FFT or WHT operators. By exploiting the spectral property of Go-
lay complementary sequence, we show that the resulting sampling
operators are maximally incoherent with the (block) DCT transform
and the Haar transform. Numerical results also suggest that they are
incoherent with the Daubechies wavelet. As most natural images can
be sparsified by the DCT and the wavelet, the proposed system holds
great potential in high resolution compressive imaging applications
such as MRI [3] and single pixel camera based on digital micromir-
ror device (DMD) [2]. It can be shown that M > O(K log* N)
measurements are required for uniform sparse reconstruction, while
only M > O(K log N) samples are needed for non-uniform recon-
struction. Some experimental results are included to demonstrate the
potential of the proposed system. The rest of the paper is organized
as follows. In Section II, we briefly review compressed sensing sys-
tems using partial (randomized) unitary measurement matrices. In
Section III, we propose Golay sequence for Fourier and Hadamard
imaging. We also present analytical coherence bounds between the
proposed systems and the DCT or the wavelet transforms. Experi-
mental results are shown in Section IV, followed by conclusions in
Section V.

Notations: Throughout this paper, vectors are denoted by bold-
faced lowercase letters and matrices by boldfaced uppercase char-
acters. If their sizes are not clear from the context, subscripts are
provided. I, F and C represent the identity matrix, the normalized
FFT matrix and the Type-II DCT matrix, respectively. A7 repre-
sents the transpose of A. For an N x N matrix A, let u(A) denote
its coherence parameter [9], i.e., the maximum magnitude of its ele-
ments,

M(A) - OSPIE%)J(V— 1

|A(p, )|

For two N x N matrices A and B, their mutual coherence 11(A, B)
is defined as

uw(A,B) = u(AB) = max

0<p,g<N-1

[A(p,)B(:, 9)l,

where A (p,:) and B(:, q) correspond to the p-th row of A and g-th
column of B, respectively.

2. REVIEW

In this section, we provide an overview of subsampled unitary matrix
for compressed sensing, in which ® takes the following form

P = RU, (@3]

-
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where R is a random sampling operator which selects M samples
out of N ones uniformly at random, U is an N x N fast-computable
(random or deterministic) unitary matrix satisfying U*U = NIy.
As mentioned before, to reconstruct the signal from sparse optimisa-
tion algorithms, ® needs to be incoherent with W7, Specifically, its
reconstruction performance depends on p(U®T). It is well known
that when W is an orthonormal matrix, all K-sparse signals can be
recovered uniformly from [/;-based optimisation provided that [10]
M > O(u*(UPT)K log* N). In addition to I;-based optimisa-
tion, one can also use some iterative reconstruction methods such as
orthogonal matching pursuit [11], CoSaMP [12] and their variants.
While for a given signal, x can be reconstructed using [;-based op-
timisation if M satisfies [9] M > O(u*(U®T)K log N). This is
also called as the bound for non-uniform reconstruction.

It is obvious that if ¥ is an orthonormal matrix, then

1< p(UE") < VN,

We say that U and ¥ are maximally incoherent it u(U®T) = O(1).
Note that if the signal is sparse in the time or spatial-domain (i.e.,
when U = Iy), we can achieve the optimal coherence bound of
1 if U is chosen as the FFT or the WHT matrix. But most natural
images are sparse in the DCT or the wavelet domain, and the FFT (or
the WHT) is coherent with these transforms. To address this issue,
randomized FFT or WHT has been proposed [7, 8], in which U can
be written as

U=TD, 3)

where T is an N x N normalized FFT or WHT matrix, D is either
a random permutation operator or a random sign flipping operator.
For any orthonormal basis ¥, ;¢ (TDW”) satisfies

u(TDE") < O(y/log N)

with high probability. Note that the above statistical coherence
bound is sub-optimal.

In this paper, we propose to construct the diagonal matrix D
from the Golay sequence. By using a deterministic sequence, it is
more memory efficient, which simplifies the hardware design. As
a trade-off, it lacks universality. But we shall prove that the result-
ing sampling operator is maximally incoherent with the (block) DCT
and the Haar transform. Hence, it could be used in practice for com-
pressive sampling of natural images.

3. GOLAY SEQUENCE FOR COMPRESSIVE IMAGING

3.1. Golay Complementary Sequence

As Golay sequence holds the key for our development, we first pro-
vide a brief introduction of Golay’s complementary pair (GCP), Go-
lay sequence and their constructions [13, 14].

Definition 1. Consider a pair of length-N bipolar sequences a =

[a(0),a(1), - ,a(N —1)] and b = [b(0),b(1),--- b(N —1)].
Let the aperiodic correlation of a length-N sequence s be defined as
N—l—-1
rs(l) = Z s(k)s(k +1). “4)
k=0

a and b are said to be a Golay complementary pair [13] if
ra(l)+re(l)=0, 1<I<N-1. 5)

a (or b) is called as a Golay sequence.

Note that (5) suggests that the Golay sequence is nearly flat in
the spectral domain. To see this, define two polynomials A(z) =
SNV a(n)z™ and B(z) = SN2 b(n)2". From (5), it can be
shown that [13]

|A(2)]? +|B(2)|* = 2N, forall |z| =1, (6)

which implies that

|A(z)] < V2N and |B(z)| < V2N forall |z] =1. (7)

In the next subsection, we will use this property to derive the coher-
ence bound.

When N = 2", Golay [13, 14] proposed a method for explicit
construction by using algebraic normal forms (ANF). For an integer
1 (0 <4< 2" —1),let (40,41, - - ,in—1) denote the binary repre-
sentation of 4, that is, 1 = Z;:Ol 12!, Define two boolean functions
fa(i) and fy(7) as follows

n—2 n—1
fal@) = in@yinain + > it + ¢ ®)
1=0 1=0
fo(@) = fa(i) +ino) +¢ ©)
in which 7 represents any permutation of {0,1,--- ,n — 1}, and ¢;
(j =0,---,n—1), cand ¢ are any choice of constant in Zz. Then,

alength-N (N = 2™) GCP can be given as [13]

a(i) = (=)@, (i) = (-1 (10)
Using the explicit construction, one can obtain n!2" Golay se-
quences [14]. In fact, all the currently known binary Golay se-
quences of length N = 2" can be constructed in this way. Note that
in (8), when 7(i) =4, ¢, =0(0 <1 <n—1)and c = 0, sequence
a boils down to the famous Golay-Rudin-Shapiro sequence [13]. To
generate a length-2N GCP from a length-N GCP, one can use the
following Golay-Rudin-Shapiro recursion formula [13]

(a,b) — (alb,a| — b), (11)

where | means concatenation, and a and b can be initialized as +1.

3.2. Coherence Analysis

In this subsection, we investigate an M x N (N = 2™) sampling
operator ® with the following form

b
VM

in which R is the same as given in (2), T is an N X N normalized
FFT (T = F) or the WHT (T = W) matrix, and D = diag(d) is
a diagonal matrix whose main diagonal d is a length-N Golay se-
quence. As mentioned before, the performance of ® in compressed
sensing depends on the coherence parameter (TDWYT). In what
follows, we will focus on the case when W is a (block) Type-1I DCT
or the Haar wavelet, both of which are well-known sparsifying trans-
forms for natural images.

The following Lemma presents the coherence bound when ¥ is
the Type-1I DCT.

¢ = RTD, (12)

Lemma 1. Consider an M x N (N = 2") sampling operator ®
given by (12). Let C represent an N x N Type-1I DCT transform.
For any existing Golay-sequence d constructed from (8)-(10), we
have

w(TDC) < 2. (13)
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Proof. When T is the FFT matrix (T = F), the proof can be ob-
tained from (7) through simple math manipulations. When T is the
WHT matrix (T = W), let us consider the matrix P = WD. Note
that for a WHT, its element W (4, %) can be written as

n—1 . .
W(j,i) = (=1)==0 1, (14)

where (jo,j1,, - ,Jn—1) and (40,41, - ,in—1) denote the binary
representation of j and 4, respectively. It is clear that P(j,i) =
W (j,4)d(i), where d(2) is the i-th element of a Golay-sequence d
with the form of (8). Hence, we have

P(j,i) = (=1)*", (15)
n—2 n—1

g(i) = Z br)in41) + Z éiiL + c, (16)
=0 1=0

in which & = (¢; + 7;) mod 2. Note that g(4) in (16) takes the same
form as (8). As a result, each row P(j,:) forms a length N = 2"
Golay sequence. The coherence bound can then be easily derived by
exploiting (7). O

Note that Lemma 1 implies that we can use any existing Golay
sequence when the sparsifying transform is chosen as the DCT. As
mentioned before, when N = 2", there are 2"n! Golay sequences.
How to select the best Golay sequence for practical imaging systems
will be left for our future work.

‘We now move on to consider the case when W is the block DCT
or the Haar wavelet transform. Let C represent a block diagonal
DCT matrix as follows

C:diag(CL,CL,~~,CL), (17)

in which Cy, (L = 2% is the L x L Type-II DCT matrix. An N x N
Haar wavelet transform matrix Hx can be constructed iteratively

_ 1 [Hypo[l 1
i ey o

in which H; is initialized as H; = 1. Then, the following lemma
holds

Lemma 2. Consider an M x N sampling operator ® in (12). Sup-
pose that the main diagonal of D is a Golay sequence constructed
from (8 ) with (i) = i. Then, for the block DCT C in (17) and the
Haar wavelet transform H in (18),

w(TDCT) <2 (19)
w(TDHT) < V2 (20)

Proof of the above lemma will be given in the journal version of
this paper. As a quick check, Table 1 lists the coherence bounds for
N = 256 through numerical calculations. One can see that when
W is the (block) DCT or the Haar wavelet, these numerical solutions
agree very well with our analytical results. Although currently, we
couldn’t derive the analytical coherence bounds for other transforms,
numerical simulations in Table 1 suggest that TD is also maximally
incoherent with the Daubechies wavelet. It should be noted that for
block DCT transform, Lemma 2 suggests that the coherence bound
is independant of the block size of the DCT. In fact, the above result
can be easily extended to ¥ with variable-length of DCT [15], which
has been used for H.264/AVC as a sparsifying transform. In addition,
although our discussions are here on 1D signals, the results can be
easily generalized to multidimensional signals. It should be pointed

Table 1. Coherence value u(TD¥”) for N = 256, where the main
diagonal of D is a length-256 Golay sequence

T
v F \\Y
DCT 1.9875 | 1.9975
Block DCT8 1.8450 | 1.8123
Haar 1.4142 | 1.4142
Daubechies 4 || 2.3998 | 2.4430
Daubechies 8 || 2.3042 | 2.1554

out that unlike Lemma 1, Lemma 2 requires that d is constructed
from a subset of existing Golay sequences with 7(i) = ¢ in (8).
There are only N = 2" such sequence. At this stage, we are not
sure whether the above result can be generalized to any other Golay
sequences.

Up until now, we have shown that TD is maximally incoherent
with the Type-II DCT and the wavelet. From the previous discus-
sion, we know that for the proposed system, M > K log* N and
M > Klog N incomplete Fourier (or Hadamard) measurements
are required respectively, for uniform and non-uniform reconstruc-
tion using [;-based optimisation. Furthermore, recent work [16]
has shown that if the sampling operator is incoherent with the Haar
transform, one can also reconstruct the signal stably using total-
variation minimization algorithm with M > O(K log N) measure-
ments. This suggests the great potential of Golay sequence in com-
pressive imaging applications.

Connections with existing work Note that deterministic se-
quence has also been investigated for partial Fourier and Hadamard
imaging in the previous work. In [17], chirp sequence has been used
for MRI with T = F. The coherence bound is obtained through em-
pirical calculations. In our previous work [18], we have proposed to
use the Rudio-Shapiro sequence for Hadamard imaging (T = W),
in which we have derived the analytical coherence bound when W is
the DCT or the FFT. Here, the result is extended to a general Golay
sequence with length of N = 2" and to the case when the sparsi-
fying transform W is the block DCT and the Haar wavelet. Further-
more, we have demonstrated that Golay sequence can be also used
for Fourier imaging.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results of the proposed
sampling operators. Numerous computer simulations and proof-of-
concept hardware measurements have been carried out. Due to lack
of space, only two examples are presented.

4.1. Simulation Results

In this subsection, we present the simulation results for the applica-
tion of Golay-sequence in compressive Fourier imaging. The test im-
age is the 512 x 512 image Boat. The sparsifying transform is chosen
as the Daubechies 4 wavelet and the GPSR [19] software package
has been used. For comparison purpose, we also present the results
of partial randomized Fourier transform, in which the main diagonal
of D is constructed from a Bernoulli sequence. Fig. 1 presents the
peak signal to noise ratios of reconstructed images. As can be seen
here, by replacing a full random Bernoulli sequence with the pro-
posed Golay sequence, there is almost no performance degradation.
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Fig. 1. Rate distortion performance for the boat image.

4.2. Measurement results

This experiment is to investigate the potential application of Golay
sequence in Hadamard compressive imaging system. Such operators
can be implemented in DMD-based single-pixel camera [2]. Here,
we implemented a proof-of-concept measurement system as shown
in Fig. 2. A computer monitor is used as the light source. It se-
quentially displays the 2D binary masks specified by each row of
®, where “1” and “-1” correspond to “on” and “off”, respectively.
The light from the screen was focused by a set of lens onto the de-
tector after going through the sample. The photo diode is used as
a detector to measure the intensity of the light. Data acquisition
(DAQ) card (National Instrument USB-6221) is used to collect the
signal recorded from detector and send it to PC for image recon-
struction. Just as in [2], to get measurement results of ¢ with 1 and
-1, each measured sample was subtracted by the mean of the light
intensity, which is obtained by setting the whole monitor as on. The
window on the screen was of 512 by 512 pixels physically. Images
are then then reconstructed using the NESTA [20] package. Fig. 3
shows some reconstructed results of a 128 x 128 image clock when
the sampling rate is 7.5% (left), 15% (middle) and 30% (right), re-
spectively. This experiment confirms the robustness of the of the
proposed system in the noisy measurement. It suggests the proposed
sampling operators are very attractive for DMD-based single pixel
camera in applications such as short wave infrared imaging [4].

5. CONCLUSIONS

Partial Fourier and Hadamard imaging using compressed sensing
technique have attracted great research interests recently. In this
paper, we have proposed to use Golay sequence for such systems.
In particular, the signal of interest is first multiplied by the Golay
sequence before applying partial Fourier or Hadamard transform in
compressed imaging. The proposed system features simple design
and hard-ware friendly implementation along with fast computation
in reconstruction. We have shown that the corresponding sampling
operators are maximally incoherent with the (block) DCT and the
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Fig. 2. Schematic diagram for the proof-of-concept measurement.

Fig. 3. Reconstructed 128 x 128 images of clock from proof-of-
concept experiment in Fig. 2. Left: M /N = 7.5%; middle M /N =
15% and right: M /N = 30%.

wavelet transform. As a result, they provide a near-optimal bound
for [1-based optimisation and total variation minimization. Some
simulation and proof-of-concept experimental results have been pre-
sented to demonstrate the great potential of the proposed system.
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