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ABSTRACT

The problem of designing low coherence matrices and low-
correlation frames arises in a variety of fields, including com-
pressed sensing, MIMO communications and quantum mea-
surements. The challenge is that one must control the

(
n
2

)
pairwise inner products of the columns of the matrix. In this
paper, we follow the group code approach of David Slepian
[1], which constructs frames using unitary group represen-
tations and which in general reduces the number of distinct
inner products to n−1. We examine representations of cyclic
groups as well as generalized dihedral groups, and we expand
upon previous results which bound the coherence of the re-
sulting frames.

Index Terms— Coherence, frame, unit norm tight frame,
dihedral group, unitary system.

1. INTRODUCTION AND PREVIOUS WORK

Let M ∈ Cm×n be a complex matrix with columns {fi}ni=1

which form a frame. The frame is called tight if MM∗ is a
scalar multiple of the identity Im, and unit norm if ||fk||2 =
1,∀k. We define the coherence µ of M to be the maximum
correlation between any two distinct columns:

µ = max
i 6=j

|〈fi, fj〉|
||fi||2 · ||fj ||2

. (1)

Designing matrices and frames with low coherence is a
problem that has applications arising in a wide range of fields,
including compressive sensing [3–8], spherical codes [10,13],
MIMO communications [11,12], quantum measurements [14,
15], etc.

Of particular interest is when a frame is equiangular, ie,
the magnitude of the inner product between any two distinct
frame elements is constant: |〈fi, fj〉| = α for some α and
all i 6= j. If a frame is both tight and equiangular, then it
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achieves the following lower bound on coherence, known as
the Welch bound [13]:

Theorem 1 Let E be a field, and {fk}nk=1 be a frame for Em.
Then

max
i 6=j

|〈fi, fj〉|
||fi||2 · ||fj ||2

≥
√

n−m
m(n− 1)

, (2)

with equality if and only if {fk}nk=1 is both tight and equian-
gular.

In general, frames that are both tight and equiangular do
not exist for all values of m and n, but it can be shown that if
there is a small number of inner product magnitudes between
the elements of a tight frame, then it will tend to have low
coherence. Thus, it is of interest to construct tight frames
with few mutual inner products between the elements.

It should be noted that the study of frames is interesting in
its own right and has received substantial attention in both en-
gineering and applied math communities (see [17–19]). Much
prior work has been done in studying structured frames, in-
cluding some which are tight and/or equiangular [13, 20, 21]
and several of these have employed group theoretic meth-
ods [1, 16, 22], some of which we will describe (see Sec. 2).

2. CYCLIC GROUP CODES

The challenge in designing a low-coherence frame is that we
need to control

(
n
2

)
inner products. A structure that reduces

the number of inner products we need to consider to n − 1
was first introduced by Slepian [1] and has since been gen-
eralized [16]. To this end, let U = {U1,U2, ...,Un} be a
(multiplicative) group of unitary matrices. Suppose that for
each i, we have Ui ∈ Cm×m. Let v = [v1, ..., vm]T ∈ Cm×1

be any vector, and let M be the matrix whose ith column is
Uiv:

M =
[
U1v U2v . . . Unv

]
.

Since U is a unitary group, we have U∗i Uj = U−1
i Uj = Uk,

for some k ∈ [n]. Thus, the inner product between columns i
and j of M is

〈Uiv,Ujv〉 = v∗U∗i Ujv = v∗Ukv. (3)
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Thus, there is a distinct inner product for each Uk, and it is
not too difficult to see that each of these inner products occurs
with the same multiplicity. As promised, this group structure
of the frame reduced the number of distinct inner products
from

(
n
2

)
to n − 1 (ignoring the inner product corresponding

to the identity element).
In [23], we consider the case where U is a cyclic unitary

group, which we represent as the powers of a single matrix
U = diag(ωk1 , ωk2 , ..., ωkm) of order n, where ω = e

2πi
n :

U = {U,U2, ...,Un−1,Un = Im}. We choose n to be
an odd prime, and m to be a divisor of n − 1. Then we
choose the set K := {k1, ..., km} to be the unique subgroup
of G := (Z/nZ)× of order m (where (Z/nZ)× is the mul-
tiplicative group of nonzero integers modulo n). If we set
v =

[
1 1 . . . 1

]T
, then the inner products take the form

|v∗U`v|
||v||22

=
1
m

∣∣∣∣∣
m∑

i=1

ω`·ki

∣∣∣∣∣ . (4)

Here we can see that there is a distinct inner product for
each coset of K in G. A coset is a set in the form `K =
{`k1, ..., `km}, and the number of cosets of K in G is simply
the quotient of their sizes, so the number of inner products
becomes only r := n−1

m . In Figure 1, we illustrate how this
formulation reduces both the number of distinct inner prod-
ucts and the overall coherence compared to choosing the ki

randomly.
We note that with the forms of U and v chosen above,

the rows of M =
[
v Uv U2v . . . Un−1v

]
will cor-

respond to distinct scaled rows of the n× n Fourier matrix (a
so-called harmonic frame), and thus our frame will be tight.

3. GENERALIZING BOUNDS ON COHERENCE

In [23], we prove the following bounds on the coherence for
when r = 2 and r = 3:

Theorem 2 In the above framework when r = 2, all of our
inner products are real. If m is even, our two inner prod-
ucts are −1±

√
1+2m

2m . In this case, our frame has coherence√
n−m− 1

2
m(n−1) + 1

2m .
If m is odd, then our frame is equiangular, so we achieve

the Welch bound. Our two inner products are±
√

1
m

(
1
2 + 1

2m

)
,

and our coherence is
√

n−m
m(n−1) .

Theorem 3 If r = 3 in our construction, then the coherence
of our matrices will satisfy

µ ≤ 1
3

(
2

√
1
m

(
3 +

1
m

)
+

1
m

)
≈
√

4
3m

, (5)
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Fig. 1. The norms of the inner products associated to each
group element for (a) randomly-chosen K, and (b) K se-
lected to be a subgroup of (Z/pZ)× of index 3. Here,
n = p = 499,m = 166. In (b), as expected, there are only
three distinct values of the inner products between distinct,
normalized columns.

and for large enough m, we will asymptotically have the fol-
lowing lower bound on coherence:

µ ≥ 1√
m

(asymptotically), (6)

which is strictly greater than the Welch bound.

We now generalize these theorems to find upper bounds
on the coherence of our frames for all possible values of r
and m.

Theorem 4 In our frames constructed above, the coherence
is upper-bounded by

µ ≤ 1
r

(
(r − 1)

√
1
m

(
r − 1

m

)
+

1
m

)
. (7)

Theorem 5 If m is odd, then the coherence of our frames is
upper-bounded by

µ ≤ 1
r

√(
1
m

+
(r

2
− 1
)
β

)2

+
(r

2

)2

β2, (8)

where β =
√

1
m

(
r + 1

m

)
.
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While we must omit the proofs of these theorems due to
space constraints, we remark that they rely on rather involved
extensions of a connection between harmonic frames and dif-
ference sets posed by Xia, Zhou and Giannakis [2].

We can use similar methods to obtain lower bounds on the
coherence for certain values of r, some of which are strictly
greater than the Welch bound, but we have yet to completely
generalize them. When r = 4, for instance, we find that µ ≥
1+
√

2
4

√
1
m

(
4 + 1

m

)
when m is even, and µ can be as low as

the Welch bound when m is odd. We plot these bounds for
r = 4 in Figure 2.
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Fig. 2. The upper and lower bounds on coherence for r = 4.

4. GENERALIZED DIHEDRAL GROUPS

We now venture beyond abelian groups to see what we can
gain. The simplest class of nonabelian groups are semidirect
products of cyclic groups. On this note, consider the follow-
ing group presentation (which arises in [25]):

Gn,r = 〈σ, τ | σn = 1, τD = 1, τστ−1 = σr〉. (9)

Here, D is the order of r modulo n, and r − 1 is chosen to
be relatively prime to n. This last condition is automatically
satisfied when we take n to be an odd prime as in the cyclic
case. This is precisely a semidirect product in the form Z

nZ o
Z

DZ , and if we take D = 2 and r = −1, we see that we obtain
the familiar dihedral group D2n.

Gn,r has an irreducible representation in the form

σ 7→ S := diag(ω, ωr, ..., ωrD−1
), (10)

τ 7→ T :=
[

ID−1

1

]
, (11)

where ω = e
2πi
n and ID−1 is the (D − 1)× (D − 1) identity

matrix (see again [25]). In order to construct our frames, we
naturally would like to select a representation in the form

σ 7→ [σ] := diag(Sk1 , ...,Skm), (12)
τ 7→ [τ ] := diag(T, ...,T) (13)

where the ki are cleverly chosen integers. Note that in our
above notation, this will be aDm-dimensional representation
ofGn,r, so our resulting frame matrices will have dimensions
Dm × Dn (provided that the greatest common divisor be-
tween the ki is relatively prime to n).

At this point, we can see that in order to minimize coher-
ence we must deviate from our original construction, for if we
were to set v to the vector of all ones 1, then it would be fixed
by [τ ]b for any b, and the inner product corresponding to [τ ]b

would be 1:

v∗[τ ]bv
||v||22

=
1
||1||22

1∗[τ ]b1 =
1
||1||22

1∗1 = 1.

We address this problem as follows: in order to preserve as
much of the structure from our previous construction as pos-
sible, we would like each entry of v to have the same norm.
This will ensure that the inner products corresponding to the
elements [σ]a will have the same values as those in our previ-
ous construction corresponding to the elements of the cyclic
group generated by [σ]. A natural form for v would be to
find some D-dimensional vector w = [w1, ..., wD]T and set
v equal to the periodic vector v =

[
wT wT ... wT

]T
.

So the question now becomes how to choose w?
Let us require that wd be unit norm for each d, and con-

sider attempting to force w to satisfy the constraint that

w∗Tbw =
∑

d

w∗dw
∗
d+b = 0, ∀b (14)

where the indices are taken modulo D. It turns out that we
can satisfy all our requirements on w by selecting its indices
to form a Zadoff-Chu (ZC) sequence:

wd = e
iπd2
D if D is even

wd = e
iπd(d+1)

D if D is odd

There are n ·D group elements inGn,r, each of which can
be written in the form σaτ b for some integers 0 ≤ a < n and
0 ≤ b < D. Thus, our frame elements will take the form

[σ]a[τ ]bv =

Sak1wd+b

...
Sakmwd+b

 , (15)

where wd+b = Tbw denotes the vector obtained by cycli-
cally shifting the entries of w by b positions. (Note that by
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this notation, w = wd). Our inner products will take the
form

v∗[σ]a[τ ]bv
||v||22

=
1

m ·D

m∑
j=1

w∗dS
akjwd+b. (16)

Our new frames maintain the desirable quality of being
tight:

Theorem 6 If w = [w1, ..., wD]T is a ZC-sequence, and
v =

[
wT ... wT

]T
, then the the columns of M =[

. . . [σ]a[τ ]bv . . .
]

form a tight frame.

Proof : It is not too difficult to see that M will have D ·m
rows which can be indexed by a pair of numbers (d, j), where
1 ≤ d ≤ D and 1 ≤ j ≤ m. Row (d, j) will be given by[

z(d,j)
1 z(d,j)

2 . . . z(d,j)
D

]
,

where z(d,j)
b+1 =

[
. . . ωrd−1kjawd−b . . .

]
0≤a<n

.

Now we can see that the inner product between row (d, j)
and row (d′, j′) will be

D−1∑
b=0

n−1∑
a=0

ω(−rd−1kj+rd
′−1kj′ )aw∗d+bwd′+b (17)

=

[
n−1∑
a=0

ω(−rd−1kj+rd
′−1kj′ )a

]
·

[
D−1∑
b=0

w∗d+bwd′+b

]
(18)

Now, since the entries of w form a ZC-sequence, then∑D−1
b=0 w∗d+bwd′+b is zero unless d = d′, in which case it is

D. In this latter case,
n−1∑
a=0

ω(−rd−1kj+rd
′−1kj′ )a =

n−1∑
a=0

ωrd−1(kj′−kj)a, (19)

which is zero unless j = j′. Thus, the rows of M are orthog-
onal, so the frame is indeed tight. �

We now come to the main result of this section. For a set
of integers K = {k1, ..., km} in Z/nZ, let µcyc

K be the co-
herence of the frame arising from our original representation
of the cyclic group Z/nZ, and let µD

K be the coherence of
the frame arising from our generalized dihedral group Gn,r,
where D is the order of r modulo n.

Theorem 7 Let n be a prime and m a divisor of n − 1. Let
K be the unique subgroup of (Z/nZ)×. Then the number
of distinct inner products in the generalized dihedral frame
associated to Gn,r is at most D · n−1

m , and µD
K ≤ µ

cyc
K .

Proof : From (16), we see that the inner products for the
generalized dihedral representation will take the form

v∗[σ]a[τ ]bv
||v||22

=
1

m ·D
∑

d

w∗dwd+b

∑
k∈K

ωkard−1
(20)

=
1

m ·D
∑

d

w∗dwd+b

∑
k∈K

ωka′ , (21)

where a′ = ard−1. In this form, we see that for each value
of d in the summation, there are n−1

m possible distinct inner
products associated to the different cosets a′K, so there D ·
n−1
m possible values. Furthermore, since the entries of w are

unit norm,

|v∗[σ]a[τ ]bv|
||v||22

≤ 1
m ·D

∑
d

∣∣∣∣∣∑
k∈K

ωka′

∣∣∣∣∣ (22)

≤ 1
m ·D

∑
d

mµcyc
K (23)

= µcyc
K , (24)

so µD
K ≤ µ

cyc
K . �

In the case of regular dihedral groups (D = 2), our w be-
comes [1, i]T , and we can readily calculate our inner products
to be

v∗[σ]`v
||v||22

= Re

 1
m

m∑
j=1

ω`kj

 , (25)

v∗[σ]`[τ ]v
||v||22

= Im

− 1
m

m∑
j=1

ω`kj

 . (26)

As we can clearly see, each of these has magnitude
bounded that of the corresponding inner product in the cyclic
counterpart, 1

m

∣∣∣∑m
j=1 ω

`kj

∣∣∣ (see Fig. 3). In general, the
dihedral coherence could be substantially smaller than the
corresponding cyclic coherence. Most importantly, by ex-
tending to generalized dihedral groups, we allow for frame
matrices M with a greater variety of dimensions. In particu-
lar, the number of columns (nD) no longer need be prime.
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Fig. 3. Coherences arising from cyclic and dihedral represen-
tations for r = 4. When m is even, both coherences are the
same because the cyclic inner products are real.
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