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ABSTRACT

The multiple measurement vector problem (MMV) is a gen-
eralization of the compressed sensing problem that addresses
the recovery of a set of jointly sparse signal vectors. One of
the important contributions of this paper is to reveal that the
seemingly least related state-of-art MMV joint sparse recov-
ery algorithms - M-SBL (multiple sparse Bayesian learning)
and subspace-based hybrid greedy algorithms - have a very
important link. More specifically, we show that replacing the
log det(·) term in M-SBL by a log det(·) rank proxy that ex-
ploits the spark reduction property discovered in subspace-
based joint sparse recovery algorithms, provides significant
improvements. Theoretical analysis demonstrates that even
though M-SBL is often unable to remove all local minimizers,
the proposed method can do so under fairly mild conditions,
without affecting the global minimizer.

Index Terms— Compresse sensing, joint sparse recovery,
multiple measurement vector problem

1. INTRODUCTION

The multiple measurement vector problem (MMV) is a gener-
alization of the compressed sensing problem, which addresses
the recovery of a set of sparse signal vectors that share com-
mon non-zero support [1, 2]. Then, for a given noisy obser-
vation matrix Y = [y1, · · · ,yN ] ∈ Cm×N and a sensing
matrix A ∈ Cm×n, the multiple measurement vector (MMV)
problem can be formulated as:

minimize ‖X‖0 (1)

subject to ‖Y −AX‖F < ǫ,

where X = [x1, · · · ,xN ] ∈ Rn×N and ‖X‖0 = |suppX |,
where suppX = {1 ≤ i ≤ n : xi 6= 0} and x

i is the i-th
row of X . In a noisy environment, Obozinski et al showed
that a near optimal sampling rate reduction up to rank(Y )
can be achieved using l1/l2 mixed norm penalty [3]. Similar
gain was observed in computationally inexpensive greedy ap-
proaches such as compressive MUSIC (CS-MUSIC) [1] and
subspace augmented MUSIC (SA-MUSIC) [2].
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While the aforementioned mixed norm approach and
subspace based greed approaches provide theoretical per-
formance guarantees, there also exist a very different class
of powerful MMV algorithms that are based on empirical
Bayesian and Automatic Relevance Determination (ARD)
principle from machine learning. Among these, so-called
multiple sparse Bayesian learning (M-SBL) is best known
[4]. Even though M-SBL is more computationally expensive
than greedy algorithms such as CS-MUSIC or SA-MUSIC,
empirical results show that M-SBL is quite robust to noise
and unfavorable restricted isometry property constant (RIC)
of the sensing matrix [5]. Since Bayesian approaches are
very different from classical compressed sensing, such high
performance appears mysterious at first glance. However,
a recent breakthrough by Wipf et al unveiled that M-SBL
can be converted to a standard compressed sensing frame-
work with an additional log | · | (log determinant) penalty - a
non-separable sparsity inducing prior [6].

One of the important contributions of this paper is that
we show that the seemingly least related algorithms - M-SBL
and subspace-based hybrid greedy algorithms - have a very
important link. More specifically, we show that the log | · |
term in M-SBL is a proxy for the rank of a partial sensing
matrix corresponding to the true support. Furthermore, we
show that replacing this proxy by a log | · | proxy for the
rank of restricted partial sensing matrix that was discovered in
subspace-based hybrid greedy algorithm to exploit the spark
reduction property of MMV, provides significant performance
improvements. We show that the global minimizer of the cost
function of the proposed subspace penalized sparse learning
(SPL) algorithm is identical to the original l0 minimization
problem under some regularity conditions. Furthermore, even
though M-SBL is often impossible to remove local minimiz-
ers, our theoretical analysis demonstrates that SPL can elim-
inate all local minimizers without affecting the global mini-
mizers under fairly mild conditions.

2. SUBSPACE-PENALIZED SPARSE LEARNING

2.1. M-SBL: A Review

Under appropriate assumptions of noise and signal Gaussian
statistics, one can show that M-SBL minimizes the following
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cost function in a so-called γ space [4]:

Lγ(γ) = Tr
(

Σ−1
y Y Y ∗

)

+N log |Σy| (2)

where Σy = λI + AΓA∗,Γ = diag(γ). With an estimate of
Γ, the solution of M-SBL is given by

X = ΓA∗(λI +AΓA∗)−1Y . (3)

One of the most important contributions by Wipf is that the
minimization problem of the cost function (2) can be equiv-
alently represented as the following standard sparse recovery
framework [6]:

min
X

Lx(X), Lx(X) = ‖Y −AX‖2F + λgmsbl(X) (4)

where gmsbl(X) is a penalty given by

gmsbl(X) ≡ min
γ≥0

Tr
(

X∗Γ−1X
)

+N log |λI +AΓA∗| . (5)

Note that due to the non-negativity constraint for γ, a
critical solution should satisfy the first order Karush-Kuhn-
Tucker (KKT) necessary conditions [7]. This result in the
following fixed point equation:

γi = lim
λ→0

1
N ‖xi‖2

γiaHi (λI +AΓA∗)−1ai
=

1
N ‖xi‖2

(

P
R(Γ

1

2 A∗)

)

ii

(6)

where PR(Γ1/2A∗) denote the projection matrix for the range

space of Γ
1

2A∗. By plugging in (6) , we have

gmsbl(X) = min
γ≥0

Tr
(

X∗Γ−1X
)

+N log |λI +AΓA∗|

= N‖γ∗‖0 +N log |λI +AΓ∗A
∗| (7)

where γ∗ denotes a γ that satisfies (6). Note that the first term
in (7) imposes the row sparsity since γi = 0 for ‖xi‖ = 0 due
to (6). Then, what is the meaning of the log | · | term ?

2.2. Key Observation

Note that log det(·) is often used for proxy for a matrix rank
[8]. This leads us to an another interpretation that the penalty
term in M-SBL is equivalent to

gmsbl(X) = N‖γ‖0 +N Rprox(AΓ
1

2 ) (8)

where Rprox(·) dentoes a rank proxy; so the penalty simul-
taneously imposes the row sparsity of X as well as the low
rankness of the matrix AΓ

1

2 . However, it is not clear why
Rank(AΓ

1

2 ) needs to be minimized. In fact, this paper shows
that we may replace the second term, Rprox(AΓ

1

2 ) by geo-
metrically more intuitive rank proxys:

gSPL(X) = N‖γ‖0 +N Rprox(Q∗AΓ
1

2 )

= Tr
(

X∗Γ−1X
)

+N log |Q∗AΓA∗Q+ ǫI|

where Q denotes a basis for noise subspace such that R(Q) =
R⊥(Y ). This is due to the following theorem.

Theorem 2.1 Assume that A ∈ Rm×n, X∗ ∈ Rn×r, Y ∈
Rm×r satisfy AX∗ = Y where ‖X∗‖0 = k and the columns
of Y are linearly independent and r = rank(Y ). If A satisfies
a RIP condition 0 ≤ δL2k−r+1(A) < 1, then for noiseless
measurement we have

k − r = min
|I|≥k

rank (Q∗AI) ,

and
suppX∗ = arg min

|I|≥k
rank (Q∗AI) .

2.3. Alternating Minimization Algorithm

Therefore, following the derivation that leads to (7), we pro-
pose the following SPL penalty:

gSPL,ǫ(X) ≡ min
γ≥0

GSPL,ǫ(γ, X) (9)

where

GSPL,ǫ(γ, X) = Tr
(

X∗Γ−1X
)

+N log |Q∗AΓA∗Q+ ǫI|
(10)

Using the proposed SPL penalty, we formulate the follow-
ing SPL minimization problem:

min
X

‖Y −AX‖2F + λgSPL,ǫ(X) . (11)

This can be solved using the following alternating minimiza-
tion.

2.3.1. Minimization with respect to X

For a given estimate γ
(t), we have close form solution for

X(t+1):

X(t+1) = Γ(t)A∗(λI +AΓ(t)A∗)−1Y, Γ(t) = diag(γ(t)).

2.3.2. Estimation of γ

For a givenX(t), we have the following update equation:

γ
(t)
i =

(

1
N

∑

j |x
(t)
ij |

2

a
∗
iQ(Q∗AΓ(t)A∗Q+ ǫI)−1Q∗ai

)

1

2

, (12)

which encompasses the case of
∑

j |x
(t)
ij |

2 = 0.

3. THEORETICAL ANALYSIS

While the overall cost function is convex for each vari-
able X,γ separately, it is not convex for all these vari-
able simultaneously due to the existence of bi-convex term
Tr
(

X∗Γ−1X
)

. Indeed, this is a typical example of the d.c.
algorithm (DCA) for the difference of convex functions pro-
gramming [9, 10], and the alternating minimization algorithm
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converges to a local minimizer or a critical point. Similar to
[6], we investigate the global minimizer and local minimizers.
The global minimizer proof is essentially the same as [6], so
here we provide the conditions to remove local minimizers.

Theorem 3.1 Let X∗ denote a maximally sparse solution to
be Y = AX∗ with ‖X∗‖0 = k and the elements of A are
drawn from a random distribution. Let A satisfy the RIP con-
dition with 0 ≤ δL2k−r+1(A) < 1, where r = rank(Y ). Sup-
pose X represent a coefficient such that S = suppX and
k < |S| = p ≤ m, and XS = A†

SY . Then, the following
statements are true:

1. If X is not a basic feasible solution (BFS), it is not a
local minimizer.

2. Suppose X be a BFS. For some j /∈ S, if we have

v
∗
S,j

(

W̄S,jR̄SW̄S,j

)

vS,j > 1, (13)

where vS,j = A†
Saj , R̄S = [r̄ii′ ]i,i′∈S and W̄S,j =

diag([w̄i]i∈S) such that

r̄ii′ =
x
i(xi′ )∗

‖xi‖‖xi′‖
, w̄i =

√

a
∗
iQΨ\iQ∗ai

a
∗
jQΨQ∗aj

, (14)

for i, i′ ∈ S and j /∈ S and Ψ = (Q∗AΓAQ + ǫ)−1,
then X is not a local minimizer.

3. In particular, if rank(Q∗AS) ≤ m − r and |S ∩
suppX∗| ≥ k − r and the rows of XS\suppX∗ are in
general position, then there always exists ǫ1 > 0 such
that for any 0 < ǫ < ǫ1, X is not a local minimizer
almost surely.

Our local minimizer analysis clearly show why SPL is
better than M-SBL in finding the global minimizer. In par-
ticular, unlike M-SBL, SPL has very unique way to eliminate
the local minimizer. More specifically, as long as k − r cor-
rect supports are included in a local minimizer, SPL can es-
cape from the local minimizer almost surely. In addition, the
proposed SPL is more robust to the condition number of the
unknown signal X compared to M-SBL. This can be shown
from the following observation. Aside from W̄S,j and vS,j ,
another important components in (13) is R̄S . As rank(R̄S) ≤
k, there always exist null spaces when the rank of R̄S is not
full. In particular, in noisy cases, the corresponding numeri-
cal rank can be reduced when the condition number of R̄S is
bad, which can be happened when the rows of XS are highly
correlated. In this case, there are more chances that W̄S,jvS,j

can fall into the null space so that the condition (13) cannot
be met. However, in SPL, we can still prevent such situation
as long as k − r correct support are included in XS . This
implies that SPL can be more robust to the condition number
of the unknown signal compared to M-SBL.

4. NUMERICAL RESULTS

The elements of a sensing matrix A were generated either
from a Gaussian distribution having zero mean and variance
of 1/m, and then each column ofA was normalized to have an
unit norm. An unknown signal X with rank(X) = r ≤ k was
generated using the same procedure as in [2]. Specifically, we
randomly generated a support I , and then the corresponding
nonzero signal components were obtained by

XI = ΨΛΦ , (15)

where Ψ ∈ Rk×r was set to random orthonormal columns,
and Λ = diag([λi]

r
i=1) is a diagonal matrix whose i-th ele-

ment is given by

λi = τ i, 0 < τ < 1, (16)

and Φ ∈ R
r×N were made using Gaussian random distribu-

tion with zero mean and variance of 1/N . After generating
noiseless data, we added zero mean white Gaussian noise.
We declared success if an estimated support from a certain
algorithm was the same as a true suppX .

As the proposed algorithm does not require a prior knowl-
edge of sparsity level, we need to define a stoping criterion.
Here, the stopping criterion is defined by monitoring relative
ratio of the variable γ:

‖γ(t) − γ
(t−1)‖2

‖γ(t)‖2
< 10−3 .

From our experiments, usually 20-30 iterations are required
for SPL to converge.
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Fig. 1. Performance of various joint sparse recovery algo-
rithms at n = 128, k = 10, r = 6 when (a) SNR =
30dB,N = 16, τ = 0.1, (b) SNR = 30dB,N = 256, τ =
0.1, respectively.

To compare the proposed algorithm with various state-
of-art joint sparse recovery methods, the recovery rates of
various state-of-art joint sparse recovery algorithms such as
MUSIC, S-OMP, SA-MUSIC, sequential CS-MUSIC, and
M-SBL, and l1/l2 mixed norm approach are plotted in Fig. 1
along with those of SPL. Since M-SBL, mixed norm approach
as well as SPL do not provide a exact k-sparse solution, we
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Fig. 2. Various joint sparse recovery algorithm for varying
sparsity level at N = 256. The simulation parameters are (a)
m = 40, r = 5, τ = 1 and SNR=30dB, and (b) m = 40, r =
15, τ = 0.5 and SNR=30dB, respectively.

used the support for the largest k coefficients as a support
estimate in calculating the perfect recovery ratio. For MU-
SIC, S-OMP, SA-MUSIC, sequential CS-MUSIC, we assume
that k is known. For subspace based algorithms such as MU-
SIC, SA-MUSIC, sequential CS-MUSIC as well as SPL, we
determine the signal subspace using the following criterion

max
i∈{1,··· ,m}

σi − σi+1

σi − σm
> 0.1,

where σ1 ≥ σ2 ≥ · · · ≥m denotes the singular val-
ues of Y Y ∗. Here, the success rates were averaged over
1000 experiments. The simulation parameters were as fol-
lows: m ∈ {1, 2, . . . , 50}, n = 128, k = 8, r = 5,
SNR = 30dB, 10dB, respectively. Figs. 1(a)-(b) illus-
trates the comparison results under various snapshot number
conditions and SNR conditions. Note that SPL consistently
outperforms all other algorithms at various snapshots num-
bers. In particular, the gain increases with increasing number
of snapshots, since it provides better subspace estimation.
Also, note that SPL consistently outperforms M-SBL at all
SNR ranges. Figs. 1(a)(b) illustrates that SPL significantly
outperforms M-SBL when the condition number of X is very
bad. Moreover, as the subspace estimation becomes accurate
with increasing N , the gain becomes more significant.

Figs. 2(a)(b) shows the performance comparison of vari-
ous MMV algorithm by varying sparsity level. Here, m and
rank(Y ) are fixed and the sparsity levels changes, and we cal-
culated the perfect reconstruction ratio. Again, SPL outper-
forms all existing methods for various SNR and conditions
numbers.

5. CONCLUSION

Our joint sparse recovery algorithm was inspired from the
observation that the log | · | term in M-SBL is a rank proxy
for partial sensing matrix, and similar rank criteria exist in
subspace-based greedy MMV algorithms like CS-MUSIC
and SA-MUSIC. Furthermore, we proved that instead of
rank(AΓ1/2), minimizing rank(Q∗AΓ1/2) is more direct

way of imposing joint sparsity since its global minimizer
can provide a true joint support. Theoretical analysis demon-
strated that even though M-SBL is often impossible to remove
all local minimizers, the proposed method can do that if k− r
partial support are included in a intermediate solution.
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