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ABSTRACT
The classical shift retrieval problem considers two signals in
vector form that are related by a cyclic shift. In this paper,
we develop a compressive variant where the measurement of
the signals is undersampled. While the standard procedure to
shift retrieval is to maximize the real part of their dot prod-
uct, we show that the shift can be exactly recovered from the
corresponding compressed measurements if the sensing ma-
trix satisfies certain conditions. A special case is the partial
Fourier matrix. In this setting we show that the true shift can
be found by as low as two measurements. We further show
that the shift can often be recovered when the measurements
are perturbed by noise.

Index Terms— Compressed sensing, shift retrieval, sig-
nal reconstruction, signal registration.

1. INTRODUCTION

Compressive sensing has received growing interest in signal
processing. The theory mainly concerns recovery of a high-
dimensional signal from its downsampled measurement when
the source signal is sufficiently sparse [1, 2]. In this paper, we
show how the basic premise of compressive sensing can be
used in the context of shift retrieval. In particular, we con-
sider two signals of the same dimension that are related by
a shift transform, and we are interested to know under what
conditions such a transform can be exactly recovered from
measurement of each of the signals in a compressed low-
dimensional space. We refer to this approach as compressive
shift retrieval (CSR).

Concretely, let y and x be vectors of length n and let D`

denote a cyclic-shift by `. Assume that y and x are related by

y = D`x. (1)
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We assume throughout the paper that the shift is unique (up
to a multiple of n). Let A be a m × n sensing matrix where
m ≤ n, and define the compressed measurement signals z =
Ay and v = Ax. Our goal is to determine the shift ` from z
and v.

In shift retrieval and other more general signal alignment
problems, a standard procedure is to seek the shift that maxi-
mizes the real part of the inner product:

max
s
<{〈x,Dsy〉} = max

s
<{x∗Dsy}. (2)

In this paper we consider the related test:

max
s
<{〈z, D̄s

v〉} = max
s
<{z∗D̄s

v}, (3)

with D̄
s

= ADsA∗. We show that when the sensing ma-
trix A is taken to be a partial Fourier matrix, then under
suitable conditions the true shift can be recovered from both
noise free and noisy measurements using (3). Furthermore,
(3) reduces both the computational load and the number of
samples needed. This is of particular interest since recent
developments in sampling [3, 4, 5] have shown that Fourier
coefficients can efficiently be obtained from space (or time)
measurements by the use of an appropriate filter and by sub-
sampling the output. Remarkably, our results also show that
in some cases sampling one Fourier coefficient given by Ax
and Ay, respectively, is enough to perfectly recover the true
shift.

2. COMPRESSIVE SHIFT RETRIEVAL

Assume that z and v are given and that these are related to x
and y via the sensing matrix A. Our goal is to find the shift
relating x and y. To this end, we propose to use the test (3).
As we will see in the following, this simple test has several
desirable properties and can be guaranteed to recover the true
shift under certain conditions.

We first prove the following main theorem of CSR assum-
ing the measurement is not affected by noise:

Theorem 1 (Shift Recovery from Low Rate Data). Let X
be an n × n matrix with the ith column equal to Dix, i =
1, . . . , n, and define D̄

s
= ADsA∗. If the sensing matrix A

satisfies the following conditions:
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1) A∗ADs = DsA∗A,

2) ∃α ∈ R, αAA∗ = I and

3) all columns of AX are different,

then
max
s
<{〈z, D̄s

v〉} (4)

recovers the true shift.

The conditions of Theorem 1 may seem restrictive. How-
ever, as we will show in the following, if A is chosen as a
partial Fourier matrix, then the two first conditions of Theo-
rem 1 are trivially satisfied. The last condition is the only one
that needs to be checked and will lead to a condition on the
Fourier coefficients sampled.

Before proving the theorem, we state two lemmas.

Lemma 1 (Recovery of Shift using Projections). Let X be
the n × n-matrix made up of cyclically shifted versions of x
as columns. If the columns of AX are distinct, then the true
shift can be recovered by

min
q∈{0,1}n

‖Ay −AXq‖22 s.t. ‖q‖0 = 1. (5)

Proof of Lemma 1. Since the shift relating x and y is as-
sumed unique, it is clear that the true shift is recovered by

min
q∈{0,1}n

‖y −Xq‖22 s.t. ‖q‖0 = 1. (6)

Assume that the solution of (5) is not equivalent to that of
(6). Namely, assume that (6) gives q, (5) gives q̃ and q 6= q̃.
Since q will give a zero objective value in (5), so must q̃. We
therefore have that Ay = AXq̃ = AXq and hence

AXq̃ −AXq = AX(q̃ − q) = 0. (7)

Since q, q̃ ∈ {0, 1}n, ‖q̃‖0 = ‖q‖0 = 1, and q 6= q̃,
AX(q̃ − q) = 0 implies that two columns of AX are iden-
tical. This is a contradiction and we therefore conclude that
both (5) and (6) recover the true shift.

Lemma 2 (From (5) to (4)). Under conditions 1) and 2) of
Theorem 1, the shifts recovered by (5) and (4) are the same.

Proof of Lemma 2. Consider the objective of (5):

‖Ay −AXq‖22 =(Ay)∗Ay + (AXq)∗AXq

−(Ay)∗AXq − (AXq)∗Ay. (8)

Writing Xq = Dsx, problem (5) is equal to

max
s

2<{(Ay)∗ADsx} − (ADsx)∗ADsx. (9)

Now, if A∗ADs = DsA∗A and using that (Ds)∗Ds = I
for a shift matrix, then

(ADsx)∗ADsx = x∗(Ds)∗A∗ADsx = ‖Ax‖22, (10)

which is independent of s. Therefore, the shift recovered by
(9) is the same as that of

max
s
<{(Ay)∗ADsx}. (11)

Lastly, if we again use that A∗ADs = DsA∗A and
αAA∗ = I , then (4) follows from

<{(Ay)∗ADsx} = <{y∗A∗ADsx} (12)
= α<{y∗A∗AA∗ADsx} (13)
= α<{y∗A∗ADsA∗Ax} (14)

= α<{〈z, D̄s
v〉} (15)

where z = Ay and v = Ax.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The assumptions of Theorem 1 imply
that requirements of both Lemmas 1 and 2 are satisfied. The
theorem therefore follows trivially.

The conditions of Theorem 1 can be checked prior to ac-
tually computing the estimate of the shift. However, knowing
the estimate of the shift, it is easy to see from the proof of
Lemma 1 that it is enough to check if the column of AX as-
sociated with the nonzero element of q̃ is different than all
other columns of AX . We hence do not need to check if all
columns of AX are different.

Of particular interest is the case where A is made up of a
partial Fourier basis. That is, A takes the form

A =
1√
n


1 e−

2jπk1
n e−

4jπk1
n · · · e−

2(n−1)jπk1
n

1 e−
2jπk2
n

. . . e−
2(n−1)jπk2

n

...
...

1 e−
2jπkm
n e−

4jπkm
n · · · e−

2(n−1)jπkm
n


where k1, . . . , km ∈ {0, 1, 2, . . . n − 1},m ≤ n. For this
specific choice,

AX =
1√
n


Xk1 Xk1e

2k1πj
n · · · Xk1e

2(n−1)k1πj
n

Xk2

. . . Xk2e
2(n−1)k2πj

n

...
Xkm Xkme

2kmπj
n · · · Xkme

2(n−1)kmπj
n


where Xr denotes the rth Fourier coefficient of the Fourier
transform of x. Using this result in Theorem 1 gives the fol-
lowing corollary:
Corollary 1 (Shift Recovery from Low Rate Fourier Data).
With A denoting a partial Fourier matrix and zi and vi the
ith element of z and v,

max
s
<

{
m∑
i=1

zivie
−2πjkis

n

}
(16)

recovers the true shift if there exists a p ∈ {1, . . . ,m} such
that Xkp 6= 0 and {1, . . . , n− 1}kpn contains no integers.
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Remarkably the corollary states that all we need is two
scalar measurements, z and v, to perfectly recover the true
shift. The scalar measurements can be any nonzero Fourier
coefficient of x and y as long as all elements in {1, . . . , n −
1}k1n contains no integers. Also note that only 2mn multipli-
cations are required to evaluate the test.

We need the following lemma to prove Corollary 1.

Lemma 3. Let A be a partial Fourier matrix. Then DsA∗A =
A∗ADs for all s = 0, 1, . . . , n− 1.

Proof of Lemma 3. Let M = ADs and Q = A(Ds)∗. By
the definition of Ds, M is a column permutation of A where
the columns are shifted s to the right. Thus, the rth column of
M is equal to the tth column of A where t = (r − s)mod n.
It is also easy to see that (Ds)∗ permutes the columns of A
by s to the left so that the rth column of Q is equal to the qth
column of A where q = (r+s)mod n. Now, the prth element
of A∗M = A∗ADs is given by

(A:,p)
∗M :,r = (A:,p)

∗A:,r−s =
1

n

m∑
i=1

e2jπki(p−r+s),

(17)
where A:,p is used to denote the pth column of A and M :,r

the rth column or M . On the other hand, the prth element of
Q∗A = DsA∗A is given by

(Q:,p)
∗A:,r = (A:,p+s)

∗A:,r =
1

n

m∑
i=1

e2jπki(p+s−r). (18)

Clearly, the two are equivalent.

We are now ready to prove Corollary 1.

Proof of Corollary 1. Lemma 3 gives that Condition 1) of
Theorem 1 is satisfied. Since a full Fourier matrix is orthonor-
mal, a matrix made up of a selection of rows of a Fourier ma-
trix satisfies Condition 2). The last condition of Theorem 1
requires columns of AX to be distinct. A sufficient condition
is that there exists a row with all distinct elements. As shown
previously, the prth element of AX isXkpe

2jπkp(r−1)

n . IfXkp

is assumed nonzero, a sufficient condition for AX to have
distinct columns is hence that e

2jπkpr1
n 6= e

2jπkpr2
n , r1, r2 ∈

{0, . . . , n − 1}, r1 6= r2. This condition can be simplified to
kpr1
n 6= kpr2

n + γ, γ ∈ Z. By realizing that r1 − r2 takes
values in {−n + 1, . . . ,−1, 1, . . . , n − 1} we get that the
condition is equivalent to requiring that there is no integers
in {−n + 1, . . . ,−1, 1, . . . , n − 1}kpn . Due to symmetry, a
sufficient condition for distinct columns is that there exists a
p ∈ {1, . . . ,m} such that Xkp 6= 0 and {1, . . . , n − 1}kpn
contains no integers. Last, if we write out ADsA∗ we get
that the prth element is equal to δp,re−

2jπkps

n /n and hence
the simplified test proposed in (16).

Example 1 (A Monte Carlo Simulation). In this example we
carry out a Monte Carlo simulation. In each trial we let m

and ` be random integers between 1 and 9 and generate x by
sampling from a n-dimensional uniform distribution. We let
n = 10 and make sure that A in each trial is a partial Fourier
basis satisfying the assumptions of Corollary 1. We carry out
10000 trials. The true shift was recovered in each run by the
simplified test (16) of Corollary 1. This is quite remarkable
since when m = 1, we recover the true shift using only two
scalar measurement z and v and 1/5 of the multiplications
that maximizing the inner product between the unprojected
signals (2) would have needed.

3. NOISY COMPRESSIVE SHIFT RETRIEVAL

Now we consider the noisy version of CSR, where the mea-
surements z and v are perturbed by noise:

z̃ = z + ez, ṽ = v + ev. (19)

Similar to the noise free case, here we can also guarantee the
recovery of the true shift. Our main result is given in the
following theorem:

Theorem 2 (Noisy Recovery). Let x̃ be such that ṽ = Ax̃,
let the ith column of X̃ be shifted versions of x̃, assume that
A is a partial Fourier matrix and that the noisy measurements
are used in (16) to estimate the shift. If the `2-norm difference
between any two columns of AX̃ is greater than

∆zv , ‖ez‖2 + ‖ev‖2 +
√
‖ṽ‖22 + ‖z̃‖22 − 2 max

s
<{〈z̃, D̄s

ṽ〉},

then the estimate of the shift is not affected by the noise.

Proof of Theorem 2. From Lemma 2 we can see that seeking
s that maximizes<{〈z̃, D̄s

ṽ〉} is equivalent to seeking q that
solves

min
q∈{0,1}n

‖z̃ −AX̃q‖22 s.t. ‖q‖0 = 1, (20)

where the first column of AX̃ equals ṽ (which defines the
first column of X̃) and the ith column of X̃ a circular shift of
the first column i− 1 steps. Assume that q̂ solves (20). Since
our measurements are noisy, we can not expect a zero loss.
The loss can be shown given by

‖z̃ −AX̃q̂‖22 = ‖ṽ‖22 + ‖z̃‖22 −max
s

2<{z̃∗D̄s
ṽ}. (21)

Now, consider ‖z̃−AX̃q̂‖2. Assume that q0 solves the noise
free version of (20) and let X̃ = X + H . We have the
following inequality

‖z̃ −AX̃q̂‖2 = ‖z + ez − z + AXq0 −AX̃q̂‖2
= ‖ez + AXq0 −AX̃q̂‖2
= ‖ez + A(X̃ −H)q0 −AX̃q̂‖2
≥ ‖AX̃q0 −AX̃q̂‖2 − ‖ez‖2 − ‖ev‖2
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where we used the fact that AHq0 = ev . Therefore

‖AX̃q0−AX̃q̂‖2 ≤ ∆zv. (22)

Since ‖q̂‖0 = ‖q0‖0 = 1, we get that if the `2 difference
between any two columns of AX̃ is greater than ∆vz , then
q0 = q̂.

Example 2 (Recovery of Shift from Noisy Data). In this
experiment we run a Monte Carlo simulation consisting of
10000 trials for each m = 1, . . . , 10, and for two different
SNR. In Figure 1, 10 histograms are shown (corresponding
to m = 1, . . . , 10) for

SNR =
‖z‖22
‖z̃ − z‖22

(23)

being 2 (low SNR) and in Figure 2, 10 (high SNR). ez and ex
were both generate by sampling from

N (0, σ2) + jN (0, σ2). (24)

We further used n = 10, ` = 5 and sampled x from a uni-
form (0,1)-distribution. The conclusion from the simulations
is that the smaller the m, the more noise sensitive estimate
of the shift. 12 % of the correctly estimated shifts could us-
ing Theorem 2 be predicted to be the same as the noise free
estimate for m = 1 and the high SNR case while 40 % for
m = 2.

Fig. 1. Histogram plots for the estimated shift and low SNR.
From left to right, top to bottom, m = 1, . . . , 10. The true
shift was set to 5 in all trials.

Fig. 2. Histogram plots for the estimated shift and high SNR.
From left to right, top to bottom, m = 1, . . . , 10. The true
shift was set to 5 in all trials.

Theorem 2 gives conditions for when the noise does not
affect the estimate of the shift. This is a good property but
even better would be if the recovery of the true shift could be
guaranteed. This is given by the following corollary.

Corollary 2 (Recovery of the True Shift from Noisy Data). If
the `2 difference between any two columns of AX̃ is greater
than 2‖ev‖2 and the conditions of Theorem 2 are fulfilled,
then (16) recovers the true shift.

Proof of Corollary 2. Let q̃ and q̂ be any vectors such that
‖q̂‖0 = ‖q̃‖0 = 1, q̂ 6= q̃ and q̂, q̃ ∈ {0, 1}n. Using the
triangle inequality we have that

‖AX̃q̂ −AX̃q̃‖2 = ‖A(X + H)(q̂ − q̃)‖2 (25)
≤‖AX(q̂ − q̃)‖2 + ‖AH(q̂ − q̃)‖2 (26)
≤‖AX(q̂ − q̃)‖2 + 2‖ev‖2. (27)

Hence, if ‖AX̃q̂ −AX̃q̃‖2 − 2‖ev‖2 > 0 then ‖AX(q̂ −
q̃)‖2 is greater than zero. Now since Theorem 2 gives that
(16) recovers the same shift as if the measurements would
have been noise-free, and since Corollary 1 gives that the
noise-free estimate is equal to the true shift if ‖AX(q̂− q̃)‖2
is greater than zero, we can guarantee the recovery of the true
shift also in the noisy case.

4. RELATION TO PRIOR WORK

Optimizing a shift retrieval function such as (2) can appear in
a broad category of signal alignment problems, which have
a wide range of applications in signal processing and image
processing. In signal processing, shift retrieval has been used
to align acoustic signals for segmentation or averaging [6, 7].
In image processing, studies related to image registration and
target tracking typically are more focused on recovering more
general 2D image transforms, including 2D shifts, scaling,
and affine transform, that aligns a target image to a reference
image [8, 9, 10]. In addition to the objective function (2)
widely used in the literature, another popular dynamic pro-
gram for signal alignment is known as dynamic time warp-
ing [11].

In the compressive sensing framework, compressive sig-
nal alignment problems have been addressed in only a few
publications. In [12], the authors considered alignment of
images under random projection. The work was based on the
Johnson-Lindenstrauss property of random projection, and
proposed an objective function that can be solved efficiently
using difference of two convex programming algorithms. In
this paper, we instead focus on proving theoretical guarantees
of exact shift recovery when the signal is subsampled by a
partial Fourier basis.

A more recent work called RASL addresses alignment of
an ensemble of correlated signals [10]. The premise of the
RASL method is that the ensemble of the signals in vector
form can be concatenated in a low-rank matrix if the mis-
alignment between them can be compensated. However, the
method has not provided an analysis of the performance in a
downsampled feature space, and does not deal with the pair-
wise alignment problem, e.g., the shift retrieval problem (2).
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