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ABSTRACT

Observing that sparse systems are almost smooth, we propose to
utilize the newly-introduced adaptively-weighted total variation
(AWTV) for sparse system identification. In our formulation, a
sparse system identification problem is posed as a sequential sup-
pression of a time-varying cost function: the sum of AWTV and
a data-fidelity term. In order to handle such a non-differentiable
cost function efficiently, we propose a time-varying extension of
a primal-dual splitting type algorithm, named the adaptive primal-
dual splitting method (APDS). APDS is free from operator inversion
or other highly complex operations, resulting in computationally ef-
ficient implementation in online manner. Moreover, APDS realizes
that the sequence defined in a certain product space monotonically
approaches the solution set of the current cost function, i.e., the se-
quence generated by APDS pursues desired replicas of the unknown
system in each time-step. Our scheme is applied to a network
echo cancellation problem where it shows excellent performance
compared with conventional methods.

Index Terms— adaptive filtering, sparse system identification,
total variation, primal-dual splitting

1. INTRODUCTION

Sparse system identification, i.e., the system to be estimated is
assumed to be sparse, arises in many applications including net-
work/acoustic echo cancellation and channel estimation/equalization.
For estimating such an unknown sparse system efficiently, adaptive
filtering methods using ℓ0 pseudonorm/ℓ1 norm/their variants as a
sparsity-inducing term have been developed [1, 2, 3, 4, 5, 6, 7, 8,
9, 10]. The adaptive proximal forward-backward splitting method
(APFBS) [2, 7, 9, 10] and adaptive Douglas-Rachford splitting
method (ADRS) [8] are proximal adaptive filtering methods that can
handle a cost function employing the adaptively-weighted ℓ1 norm
(AWℓ1) known as a powerful sparsity-inducing term, and they can
suppress such a non-differentiable cost function with reasonably-
low computational convexity by using the notion of the proximity
operator (see the footnote 3). Indeed, they have achieved excellent
performance in sparse system identification.

Incidentally, as observed in the left of Fig. 1, many sparse sys-
tems can be seen to be smooth (inactive coefficients) with few sharp
edges (active coefficients). Moreover, since the notion of smooth-
ness takes a relative information between neighbouring coefficients
into account, promoting smoothness is expected to result in a bet-
ter convergence property than the case where the information of the
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Fig. 1. Sparse system and adaptive filtering strategy.

coefficients are treated independently like ℓ0/ℓ1 cases. These ob-
servations motivate us to utilize the total variation [11], known as
a powerful edge-keeping smoother in image processing, for sparse
system identification.

The first contribution of this paper is to propose an adaptive
extension of the so-called total variation [11], for sparse system
identification. We name it the adaptively-weighted total variation
(AWTV). AWTV is defined as the sum of the adaptively-weighted
absolute differences of the filter coefficients. (for the details of the
weight controlling, see Section 3.1), so that we can efficiently pro-
mote the smoothness in online manner by suppressing AWTV.

Different from the case of AWℓ1, it is hard to suppress cost func-
tions employing AWTV using conventional adaptive filtering meth-
ods due to the composition of a discrete gradient operator. ADRS
is the only existing method that can deal with AWTV via a certain
splitting technique. In this case, however, ADRS requires operator
inversion in each time-step whose computational cost is usually not
accepted in adaptive strategy.

The second contribution of this paper is to propose a novel prox-
imal adaptive filtering method to overcome the above-mentioned dif-
ficulty. Our proposed method is a natural time-varying extension of
the primal-dual splitting method [12], which is one of primal-dual
splitting type algorithms and has been applied to image processing
[13], and thus we call the proposed method the adaptive primal-
dual splitting method (APDS). APDS is superior to existing adap-
tive methods in terms of the treatment of non-differentiable convex
functions involving linear operators like AWTV because it can sup-
press cost functions employing such a function without using any
computationally expensive procedure. Moreover, APDS has an at-
tractive property, that is, the sequence generated by APDS in each
time-step, which corresponds to the pair of the current estimate and
its dual, monotonically approaches the solution set of the current
cost function defined in the product space of primal and dual do-
main. In other words, the sequence pursues a time-varying set that
is expected to contain the unknown system. APDS with AWTV is
applied to a network echo cancellation where it shows excellent per-
formance compared to existing adaptive filtering methods.
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2. SPARSE SYSTEM IDENTIFICATION PROBLEM

Let R, N, and N∗ be the sets of all real numbers, all nonnegative, and
positive integers, respectively. Suppose that we observe the output
sequence dk ∈ R (k ∈ N) obeying the following linear measurement
model:

dk = utkhopt + nk, (1)

where k ∈ N denotes the time index, N ∈ N∗ the tap length, uk :=
[uk, uk−1, . . . , uk−N+1]

t ∈ RN an observed vector defined with
the input sequence uk ∈ R, hopt the unknown system we wish to
estimate (e.g., echo impulse response), and nk ∈ R the noise process
((·)t stands for the transposition).

Moreover, we assume that the system is sparse, i.e., only
a few coefficients of hopt are significantly different from zero
(active coefficients), and else are zero or near-zero (inactive co-
efficients) as shown in the left of Fig. 1. The objective is to
approximate the unknown system hopt (the support of the ac-
tive coefficients is supposed to be unknown) by the adaptive filter
hk := [h1(k), h2(k), . . . , hN(k)]

t ∈ RN with the knowledge on
(ui, di)

k
i=0 and an initial estimate h0 (see, the right of Fig. 1).

3. PROPOSED METHOD

3.1. Adaptively-Weighted Total Variation

Let D be a discrete gradient operator given by

D : RN → RN−1 : hi(k) 7→

{
hi+1(k) − hi(k), if i < N,

0, if i = N.
(2)

Then, we propose the adaptively-weighted total variation (AWTV)
defined as follows:

∥ · ∥wk
TV : RN → [0,∞)

: h 7→ ∥Dh∥wk
1 =

N−1∑
i=1

wi(k)|hi+1(k) − hi(k)|, (3)

where ∥ · ∥wk
1 is AWℓ1 introduced in [2], and wk ∈ RN−1 a weight

vector containing wi(k) ∈ (0,∞) (i = 1, . . . , N − 1). Each wi(k)
is controlled to be a small value when the corresponding absolute
difference |hi+1(k) −hi(k)| is significantly large because such a dif-
ference represents the active coefficients of the unknown sparse sys-
tem to be estimated, and hence it should be preserved. Indeed, each
wi(k) is adaptively controlled as follows:

wi(k) :=

{
dω, if |hi+1(k) − hi(k)| > t,

ω, otherwise,
(4)

where ω ∈ (0,∞), d ≈ 0, and t > 0 is the thresholding parameter.
To our best knowledge, there is no computationally-efficient

technique for the calculation of the proximity operator of AWTV,
which implies the difficulty of suppressing cost functions employ-
ing AWTV. On the other hand, the adaptive primal-dual splitting
method to be presented in the next subsection can reduce its com-
putation into the time-varying soft thresholding [2], resulting in a
computationally efficient implementation.

3.2. Adaptive Primal-Dual Splitting Method

Let H,K be real Hilbert spaces equipped with the standard inner
products ⟨·, ·⟩H, ⟨·, ·⟩K and their induced norms ∥ · ∥H, ∥ · ∥K,
φk, ψk ∈ Γ0(H)1 (k ∈ N), where φk is differentiable on H and its
gradient ∇φk : H → H is βk-Lipschitzian2 for some βk ∈ (0,∞),
ϑk ∈ Γ0(K), and L : H → K a bounded linear operator. Consider
the following time-varying cost function:

Θk(x) := φk(x) + ψk(x) + ϑk(Lx). (5)

Definition 3.1 (Adaptive Primal-Dual Splitting Method (APDS)).
For any x0 ∈ H and ξ0 ∈ K, the adaptive primal-dual splitting
method (APDS) for suppressing Θk is defined by

x̂k+1 := proxγψk
[(I − γ∇φk)xk − γL∗ξk],

ξ̂k+1 := proxδϑ∗
k
[ξk + δL(2xk+1 − xk)],

xk+1 := (1− λk)xk + λkx̂k+1,

ξk+1 := (1− λk)ξk + λkξ̂k+1,

(6)

where ‘prox’ denotes the proximity operator3, ϑ∗
k the Fenchel-

Rockafellar conjugate function4 of ϑk, L∗ the adjoint opera-
tor of L, γ, δ ∈ (0,∞) satisfying that 1

γ
− δ∥L∥2op > βk

2

(∥ · ∥op stands for the operator norm), λk ∈ [0, 4κ−1
2κ

] such that∑
k∈N λk(1−

2κλk
4κ−1

) = ∞, and κ := 1
βk

( 1
γ
− δ∥L∥2op) > 1

2
.

Theorem 3.1 (Primal-Dual Monotone Approximation of APDS).
Let Ξk(ξ) := (φk + ψk)

∗(−L∗ξ) + ϑ∗
k(ξ), Z := H×K be a real

Hilbert space, where the inner product ⟨·, ·⟩Z and its induced norm
∥ ·∥Z are defined by ⟨(x, ξ), (x′, ξ′)⟩Z := ⟨x,x′⟩H+ ⟨x,x′⟩K and
∥(x, ξ)∥Z :=

√
⟨(x, ξ), (x, ξ)⟩Z for (x, ξ), (x′, ξ′) ∈ Z . Fur-

thermore, we define a bounded linear operator

P : Z → Z :

(
x

ξ

)
7→

( 1
γ
I −L∗

−L 1
δ
I

)(
x

ξ

)
, (7)

which is self-adjoint, surjective, and ∀(x, ξ) ∈ Z , ∃a ∈ (0,∞),
⟨(x, ξ), P (x, ξ)⟩Z ≥ a∥(x, ξ)∥2Z . Then, we can define another
real Hilbert space ZP equipped with the inner product ⟨·, ·⟩ZP :=
⟨·, P ·⟩Z and its induced norm ∥ · ∥ZP .

Suppose that∪
λ>0

{λx | x ∈ Ldom(ψk)− dom(ϑk)}

= span(Ldom(ψk)− dom(ϑk)), (8)

1A function f : H → (−∞,∞] is called proper lower semicontinuous
convex if dom(f) := {x ∈ H | f(x) < ∞} ̸= ∅, lev≤α(f) := {x ∈
H | f(x) ≤ α} is closed for every α ∈ R, and f(λx + (1 − λ)y) ≤
λf(x)+(1−λ)f(y) for every x,y ∈ H and λ ∈ (0, 1), respectively. The
set of all proper lower semicontinuous convex functions on H is denoted by
Γ0(H).

2A mapping T : H → H is called κ-Lipschitzian if ∥T (x)− T (y)∥ ≤
κ∥x− y∥ for some κ ∈ (0,∞) and every x,y ∈ H.

3For any γ ∈ (0,∞)，the proximity operator of f ∈ Γ0(H) is given by

proxγf (x) := arg min
y∈H

{
f(y) +

1

2γ
∥x− y∥2

}
.

4The Fenchel-Rockafellar conjugate function of f ∈ Γ0(H) is defined
by f∗(ξ) := supx∈H{⟨x, ξ⟩ − f(x)}. The proximity operator of f∗ can
be expressed as proxγf∗ (x) = x− γprox 1

γ
f (

1
γ
x).
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and

(xk, ξk) /∈ Ωk :=
{
(x, ξ) ∈ ZP

∣∣∣ Θk(x)=Θ⋆
k

Ξk(ξ)=Ξ⋆
k

}
, (9)

where span(S) is the smallest closed subspace of K containing the
set S, Θ⋆k := infx∈HΘk(x) and Ξ⋆k := infξ∈KΞk(ξ). Then, for any
(x⋆(k), ξ⋆(k)) ∈ Ωk, the sequence {(xk, ξk)}k∈N generated by the
algorithm (6) satisfies

∥(xk+1, ξk+1)− (x⋆(k), ξ⋆(k))∥ZP

< ∥(xk, ξk)− (x⋆(k), ξ⋆(k))∥ZP . (10)

The inequality (10) implies that {(xk, ξk)}k≥0 monotonically
approaches the solution set Ωk that is expected to include the un-
known system to be estimated.

Remark 3.1 (Advantages of APDS compared with other proximal
adaptive filtering methods).

• APDS is able to suppress a time-varying cost function
consisting of the sum of differentiable and multiple non-
differentiable convex functions by using their gradient and
proximity operators.

• APDS can deal with non-differentiable convex functions in-
volving a linear operator, such as AWTV, without using oper-
ator inversion.

3.3. Example of Cost function Design

We design a time-varying cost function employing AWTV as fol-
lows:

ΘTVk (h) := ∥h∥wk
TV + ι

S
(εk)

k

(h), (11)

where ι
S
(εk)

k

is the indicator function5 of the following nonempty

closed convex set

S
(εk)
k := {h ∈ RN | |utkh− dk| ≤ εk}, (12)

which is the so-called hyper slab [14] with a user-defined tolerance
εk w.r.t. the additive noise nk ∈ R. The hyper slab S(εk)

k plays a
role of a data-fidelity to the input-output pair (uk, dk) (also utilized
in [8]). By letting

φk : RN → R : h 7→ 0, (13)

ψk : RN → [0,∞] : h 7→ ι
S
(εk)

k

(h), (14)

ϑk : RN → [0,∞] : η 7→ ∥η∥wk
1 , (15)

L : RN → RN : h 7→ Dh, (16)

in (5), the cost function (5) becomes equivalent to (11), so that APDS
is applicable to (11), resulting in Algorithm 3.1.

Remark 3.2 (Note on The Implementation of Algorithm 3.1).
5For a given nonempty closed convex set C in a real Hilbert space H, its

indicator function is defined as

ιC(x) :=

{
0, if x ∈ C,

∞, otherwise.

The proximity operator of ιC for any γ ∈ (0,∞) coincides with the metric
projection onto C, i.e., proxγιC (x) = PC(x) := argmin

y∈C
∥y − x∥.

Algorithm 3.1 (APDS for (11))
1: Set k = 0, and choose h0,η0,W0, µ0, γ0, δ0
2: while a stop criterion is not satisfied do
3: tk = hk − γDtηk
4: ĥk+1 = P

S
(εk)

k

(tk)

5: τ k = ηk + δD(2ĥk+1 − hk)
6: η̂k+1 = τ k − δprox 1

δ
∥·∥wk

1
( 1
δ
τ k)

7: hk+1 = (1− λk)hk + λkĥk+1

8: ηk+1 = (1− λk)ηk + λkη̂k+1

9: k = k + 1
10: end while

• (Computation of D and Dt) This can be implemented by the
calculation of the difference between neighbouring filter co-
efficients, resulting in O(N) cost.

• (Computation of prox 1
δ
∥·∥wk

1
) The proximity operator of

AWℓ1 introduced in [2] is given by

prox 1
δ
∥·∥wk

1
: RN → RN : xi 7→

xi −
wi(k)

δ
if xi >

wi(k)

δ
,

xi if − wi(k)

δ
≤ xi ≤

wi(k)

δ
,

xi +
wi(k)

δ
if xi < −wi(k)

δ
,

which has O(N) cost.
• (Computation of P

S
(εk)

k

) The projection onto the hyper slab

S
(εk)
k , which has also O(N) cost, is given by

P
S
(εk)

k

: RN → RN : x 7→{
x, x ∈ S

(εk)
k ,

x− (ut
kx−dk)−sgn(ut

kx−dk)εk
∥uk∥22

uk, otherwise,

where ‘sgn’ denotes the signum function defined by

sgn : R → R : x 7→

{
x
|x| , x ̸= 0,

0, x = 0.

Hence, the total cost of the algorithm is O(N).

4. NUMERICAL EXPERIMENT

We examined the performance of APDS with AWTV in the context
of a simple network echo cancellation problem for white noise input.
We used the sparse echo impulse response hopt of length N = 512
with sampling rate 8 kHz initialized according to the model 1 of
ITU-T G.168 [15], shown in the left of Fig. 1. The input signal
uk was generated according N (0, 1). The noise nk was set to zero
mean white Gaussian with signal-to-noise ratio (SNR)=15dB, where
SNR:= 10 log10(E[(utkhopt)

2]/E[n2
k]).

Methods for comparison are listed in Remark 4.1. Their step-
sizes were chosen in such a way that their convergence speed are the
same (all the following methods have O(N) cost).

Remark 4.1 (Methods for Comparison).
• ‘NLMS’: It stands for the Normalized Least Mean Square

(NLMS) [16] with the step-size 1. NLMS is interpreted as an
algorithm which iteratively performs the projection onto S(0)

k

(see (12)).
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Fig. 2. Comparison of the methods in system mismatch.

• ‘RZA-LMS’: It stands for the Reweighted Zero-Attracting
(RZA) LMS [1]6 with the step-size 0.7. The parameters were
set as (δ, λ, cRZA) = (1, 4.0× 10−4, 1.0× 105).

• ‘APFBS-AWl1’: It stands for APFBS employing AWℓ1 [2]
with the step-size 0.9, where the cost function is the sum of
AWℓ1 and the square of the distance function w.r.t. the set
S

(εk)
k . The parameters were set as (ω, d, t, εk, γ) = (1, 1.0×

10−6, 5.0× 10−4, 4.2× 10−2, 1).

• ‘ADRS-AWl1’: It stands for ADRS employing AWℓ1 [8]
with the step-size 1.7. The cost function is given by

Θℓ1k (h) := ∥h∥wk
1 + ι

S
(εk)

k

(h), (18)

where the weight wk is controlled by the technique in [2].
The parameters were set as (ω, d, t, εk, γ) = (1, 1.0 ×
10−6, 5.0× 10−4, 4.2× 10−2, 1).

• ‘APDS-AWl1’: It stands for APDS employing AWℓ1 with
the step-size 0.8. The cost function is given by (18). The pa-
rameters were set as (ω, d, t, εk, γ, δ) = (8, 1.0×10−6, 8.0×
10−4, 4.2× 10−2, 0.15, 0.15). This is for comparison of the
efficacy of AWℓ1 and AWTV.

• ‘APDS-AWTV’: It stands for APDS employing AWTV with
the step-size 0.8. The cost function is given by (11). The pa-
rameters were set as (ω, d, t, εk, γ, δ) = (8, 1.0×10−6, 8.0×
10−4, 4.2× 10−2, 0.15, 0.15).

Figure 2 depicts a comparison of the methods in the sense of

system-mismatch 10 log10
∥hopt−hk∥22

∥hopt∥22
averaged over 100 runs.

‘APDS-TV’ (proposed) achieved the best stead-state behavior. This
result indicates that AWTV is much effective for estimating sparse
systems compared with AWℓ1. It suggests that the suppression
of AWTV brings efficient smoothing to the inactive coefficients,
which means that it more quickly pushes them down to zero than the
suppression of AWℓ1, while keeping the active coefficients. At the
same time, APDS itself seems to be an efficient adaptive filtering
method from the comparison of ADRS-AWl1’ and ‘APDS-AWl1’,

6RZA-LMS is described by the following equation:

hk+1 := hk + µ
utkhk − dk

∥uk∥22 + δ
uk − λ

N∑
i=1

sgn((hk)i)
1 + cRZA|(hk)i|

ei, (17)

where {ei}Ni=1 is the standard orthonormal basis of RN , i.e., ei :=

[0, . . . , 0, 1, 0, . . . , 0]t with the value 1 assigned to its i-th position, µ ∈
(0,∞) the step-size, δ ∈ [0,∞) the parameter for numerical stability,
λ ∈ (0,∞) the sparsity parameter, and cRZA ∈ (0,∞) is a constant.

where APDS indicates a better performance even they use the same
cost function. This may be because of the monotone approximation
property of APDS, which ADRS does not have.

One may think that the system used in this experiment is group
sparse, so that group ℓ1 norms [17, 18, 19] can be also considered
as a suitable choice for sparsity-inducing term. An advantage of
AWTV compared to them is that it does not require information on
the support of the active coefficients of the unknown system.

We should consider the case that the system to be estimated is
sparse but highly non-smooth, i.e., the positions of the active coef-
ficients are completely random. In such a case, AWTV may not be
as effective as AWℓ1 because the value of AWTV is approximately
twice as large as that of AWℓ1.

Although we fixed the parameters of APDS (and the other meth-
ods) in each time step in this experiment, it is possible to control
them in some online manner, for example, the parameter ω can be
updated in such a way that it is inversely proportional to the value
of AWTV in the last time step, which enables us to avoid over-
smoothing in the case that the system to be estimated is highly non-
smooth.

5. CONCLUDING REMARKS

We have proposed the adaptively-weighted total variation (AWTV)
and the adaptive primal-dual splitting algorithm (APDS), for sparse
system identification. AWTV was designed to exploit the smooth-
ness of sparse systems in online manner. APDS is a computationally-
efficient adaptive algorithm for dealing with time-varying cost
functions which consist of the sum of differentiable and multiple
non-differentiable convex functions with the composition of linear
operators. Its primal-dual monotone approximation property guar-
anteed that the sequence of APDS approaches the solution set of
the current cost function in each time-step. We have also presented
a useful example of the cost function of APDS employing AWTV
on sparse system identification. In the following, we give a brief
discussion on how our main contributions (AWTV and APDS) are
related to prior work.

As mentioned in Section 1, AWTV is an adaptive extension of
the total variation (TV) [11] that has been a popular tool in signal and
image processing fields. Advanced work on TV is found, for exam-
ple, in [20, 21, 22, 23, 24]. However, it has not been developed for
sparse system identification, and in this sense, our proposed AWTV
broadens the applicability of TV.

APDS is categorized as a proximal adaptive filtering method
which can efficiently suppress non-differentiable convex cost func-
tions by using the notion of proximity operator. Such a method was
first proposed in [2] known as APFBS, and it has been extended in
[6, 7, 9, 10]. ADRS [8] is also one of them and the only method,
except APDS, being able to handle cost functions employing mul-
tiple non-differentiable convex functions. APDS is regarded as an
advanced method compared with APFBS and APDS in the sense de-
scribed in Remark 3.1. APDS offers wide range of further applica-
tions considering sparsity, such as kernel adaptive filtering [25] and
distributed learning [26, 27]. At the same time, APDS can impose
various types of convex constraints, including the weighted ℓ1 ball
[28], the nonnegative constraint [29], and other useful convex sets
[30], on the cost function via their indicator functions. Of course, it
can also handle a variety of other convex priors, such as the ℓ1,2 and
ℓ1,∞ norms for promoting group sparsity [17, 18, 19] and the Huber
loss function [31] for being robust to impulsive noise [32, 33, 26, 10].
Finally, we remark again that APDS is a time-varying extension of
the primal-dual splitting algorithm [12].
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