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? Technicolor, 975 Avenue des Champs Blancs, CS 17616, 35576 Cesson Sévigné, France
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ABSTRACT

When fitting a probability model to voluminous data, memory and
computational time can become prohibitive. In this paper, we pro-
pose a framework aimed at fitting a mixture of isotropic Gaussians
to data vectors by computing a low-dimensional sketch of the data.
The sketch represents empirical moments of the underlying proba-
bility distribution. Deriving a reconstruction algorithm by analogy
with compressive sensing, we experimentally show that it is possi-
ble to precisely estimate the mixture parameters provided that the
sketch is large enough. Our algorithm provides good reconstruction
and scales to higher dimensions than previous probability mixture
estimation algorithms, while consuming less memory in the case of
numerous data. It also provides a privacy-preserving data analysis
tool, since the sketch doesn’t disclose information about individual
datum it is based on.

Index Terms— Gaussian mixture estimation, compressive sens-
ing, database sketch, compressive learning.

1. INTRODUCTION

When processing a data collection for learning or for other tasks, it
is often useful to fit a probability model to the data to get a more
compact representation of the data. The fitted model can be used to
represent data in a concise way, to feed learning algorithms that work
on densities, to extract features or, simply, to uncover underlying
structures.

However, fitting a mixture model often requires extensive access
to the data to estimate parameters through the iterations of an opti-
mization algorithm. Depending on the size of the data, this may not
be possible: to compute the estimation while meeting the memory
and computational limits of the hardware, one must typically ran-
domly subsample the data.

In this paper, we consider the idea of computing a sketch of the
data, which we define as a concatenation of empirical moments com-
puted in one pass over the data. Given this compressed representa-
tion, we wish to estimate a model that fits the data. Figure 1 illus-
trates this idea. Related works that define sketches of data collections
are discussed in section 2.

In order to solve our estimation problem, we search for a model
which has a sketch close to the sketch of the data collection. Sec-
tion 3 is dedicated to the definition of our problem with a special
focus on Gaussian Mixture Models (GMM). To solve it, we exploit
the analogy of the problem to compressive sensing and derive in sec-
tion 4 an algorithm analog to Iterative Hard Thresholding (IHT) [1].

We show experimentally in section 5 that it is possible to esti-
mate precisely the GMM density in some cases which will be de-
scribed later, with a lower memory consumption than EM. We give
conclusions and discuss outlooks in section 6.
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Fig. 1. Illustration of the proposed framework. The learning set is
compressed to a sketch ẑ by a sketching operator A and the mixture
parameters θ are estimated by a learning algorithm L using only the
sketch. Intuitively, we should haveK ≤ m for the algorithm to work
and m � Nn for the method to allow computational and memory
gains.

2. RELATED WORK

Algorithms using sketches can be found in the database literature [2,
3]. In this case, a sketch is a compressed representation of the data
and can be updated whenever an element is added or removed from
the database without reprocessing all the data. A popular application
is the search for frequent items in a data stream, also called heavy
hitters [4].

Histogram fitting using a sketch has been explored [5] in the
case of n-dimensional discrete vectors. In this case, the sketch is an
accumulated random projection of the vectors. This method does not
scale to high dimensions, the construction of the histogram from the
sketch having complexity which is exponential in n.

Inverse problems on density mixtures have also been studied [6,
7]. Given data drawn from a mixture of candidate functions, both
papers propose to cast the reconstruction as the optimization of a
sparsity-inducing cost function on the vector of mixture coefficients.
Both methods require the considered set of candidate densities to be
finite and the elements of this set to be incoherent, i.e., different from
each other. These assumptions do not hold for GMM: the centroids
of the Gaussians can vary continuously and be arbitrarily close to
one another.

Compressed representations of data vectors based on random
projections for linear classification have been studied in [8, 9].
These compressed representations aim at replacing a vector x by
Mx where M is a dimensionality-reducing matrix, but do not com-
press the whole data set to a size that is independent of the number
N of vectors in the set.

In [10], a compressed representation of sparse probability distri-
butions over multidimensional binary vectors is studied. The com-
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pressed representation is obtained by measuring the underlying dis-
tribution through random perceptrons and shown to carry enough
information for one to be able to reconstruct the initial distribution
with a `1 minimization algorithm.

3. PROBLEM STATEMENT

Let F ⊂ L1(Rn) be a set of probability densities, i.e., ∀f ∈ F, f is
positive and ||f ||1 =

∫
Rn f(x)dx = 1. Let X = {x1, . . . ,xN} ⊂

Rn be vectors drawn i.i.d. from a mixture p =
∑k
s=1 αsfs, with

∀s, fs ∈ F , αs ≥ 0 and
∑k
s=1 αs = 1. We want to find αs and fs

from X .
Given σ > 0, we consider the case where F is a family of

isotropic Gaussian densities of covariance matrix σI, that is:

F =

{
fµ : x 7→ 1

(2π)
n
2 σn

exp

(
‖x− µ‖22

2σ2

)
,µ ∈ Rn

}
. (1)

Given m frequencies ω1, . . . ,ωm, the sketching operator A is de-
fined as:

〈F 〉 → Cm (2)
q 7→ (h1(q), . . . , hm(q)) , (3)

where hj(q) =
∫
Rn q(x)e−i〈x,ωj〉dx and 〈F 〉 is the linear span of

F . The sketch of a density mixture q is thus obtained by sampling
the characteristic function of q atm frequencies. Given the empirical
data X drawn from p, an empirical estimate of Ap, noted ẑ, is given
by ẑ =

(
ĥ1(X ), . . . , ĥm(X )

)
with ĥj(X ) = 1

N

∑N
i=1 e

−i〈xi,ωj〉.
Reconstructing p as a k-sparse mixture of functions in F can be

cast as the following minimization problem:

p̂ = argmin
q∈Σk

‖ẑ−Aq‖22, (4)

where Σk := {f =
∑k
s=1 αsfs|∀s, fs ∈ F ∧ αs ≥ 0}. Note that

we do not enforce the condition
∑k
s=1 αs = 1. In practice, we will

see that the parameters can still be retrieved only with the positivity
constraint.

This minimization problem is reminiscent of compressive sens-
ing, where one wants to reconstruct a sparse finite-dimensional vec-
tor from a number of measures that is lower than its dimension. Typ-
ically, these measures are linear combinations of the entries of the
vector. The difference is that here, the vector is infinite-dimensional
and is sparse in a basis (F ) which is extremely coherent, i.e., com-
posed of vectors that can be very close to each other (if µ ≈ ν, then
fµ ≈ fν ).

4. ALGORITHM

To address the estimation problem (4), we propose an algorithm
analogous to Iterative Hard Thresholding (IHT) [1].

4.1. Iterative Hard Thresholding

IHT is designed to reconstruct a k-sparse signal x of dimension n
from m measurements given by y = Mx, where M is a m × n
matrix (with m < n). At each iteration, IHT updates an estimate x̂
of x, decreasing the objective function φ : x̂ 7→ 1

2
‖y−Mx̂‖22 while

ensuring the k-sparsity of x̂. This is performed in two steps:

1. The n-dimensional gradient of φ, noted g, is computed.

2. The update is given by x̂← Hk(x̂−λg), where λ is a descent
step andHk is a hard thresholding operator which keeps only
the k entries of the vector with largest module and sets the
others to 0.

4.2. Continuous case

In our case, the signal to reconstruct is p and our estimate p̂ is
parametrized by a vector α̂ ∈ Rk of positive weights and by the
support Γ̂ = {µ̂1, . . . , µ̂k} ⊂ Rn corresponding to the means of
the current estimated Gaussians. The current residual is defined by
r̂ = ẑ−Ap̂.

Some differences with IHT require a modification of the proce-
dure. In IHT, the signal one wants to reconstruct is supposed sparse
in a finite base of vectors, and the gradient of the objective function
thus have a finite number of entries which measure the infinitesi-
mal shift of the objective function if a certain entry of the vector is
shifted. In our case, the density belongs to the infinite-dimensional
space 〈F 〉, and there are as many directions in which the current es-
timation of the density can be shifted as the cardinality of Rn. The
equivalent of the gradient is the function:

gp̂(µ) = lim
t→0

1

2t

(
‖ẑ−A(p̂+ tfµ)‖22 − ‖ẑ−Ap̂‖2

)
= −〈Afµ, r̂〉. (5)

Instead of seeking k global extrema as in IHT, we seek a certain
number M of local minima of gp̂ by initializing randomly a gradi-
ent descent algorithm. The random initialization will be discussed in
section 5. These local minima are added to the current support Γ̂ and
the hard thresholding is performed by selecting the highest k com-
ponents of the projection of ẑ on the cone generated by Γ̂, i.e., the set
of linear combinations of elements of Γ̂ with positive coefficients.

Since the family F is extremely coherent, the local minima we
find may be shifted from the true mean vectors because of the impre-
cision induced by the other components of the mixture. This is why
we add a gradient descent step after the search for local minima: this
way we reduce further the objective function after having found the
local minima.

Algorithm 1 describes the overall procedure. It mainly consists
of three steps by iteration:

1. M local minima of µ 7→ gp̂(µ) are sought with a gradient
descent algorithm with random initialization and are added to
the current support.

2. The sketch ẑ is projected on this support with a positivity
constraint on the coefficients. Only the k highest coefficients
and the corresponding vectors of the support are kept.

3. A gradient descent algorithm is applied to further decrease
the objective function with respect to the weights and support
vectors.

Algorithms 2, 3, 4 and 5 describe the subfunctions.

4.3. Memory usage

Let’s consider that n, k andm are much larger than 1. If we suppose
that optimization algorithms only use first-order quantities, their
memory costs are dominated by O(kn). The computation of the
cost function of Algorithm 5 requires O(km). The storage of the
operator A (via the frequencies ωj) requires O(mn).

Therefore, the total memory usage is O((k + n)m + kn) and
does not depend on the number N of vectors. In comparison, the
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Algorithm 1 Compressive isotropic Gaussian mixture parameter es-
timation

Input: Sketch ẑ, operator A, target sparsity k, integer M .
Initialize Γ̂ = ∅, r̂ = ẑ.
repeat

Set ν1, . . . ,νM ← Find min(A, r̂,M).

Set Γ̂′ ← Γ̂ ∪ {ν1, . . . ,νM}.
Set α̂′ ← Proj cone(ẑ, Γ̂′).

Set α̂, Γ̂ ← Hard threshold(α̂′, Γ̂′, k).

Set α̂, Γ̂ ← Shift support(ẑ, α̂, Γ̂, k).

Set r̂ ← ẑ−
∑k
j=1 α̂jAfµ̂j

.
until Stopping criterion is satisfied
Return α̂, Γ̂.

Algorithm 2 Find min(A, r̂,M )
For i = 1 to M

Find a local minimum νi of the function:
ν ∈ Rn 7→ −〈Afν , r̂〉

with a gradient descent algorithm, initialized randomly.
End For
Return ν1, . . . ,νM .

memory requirement of EM isO(N(k+n)) to store both the vectors
and their probabilities to belong to each current component of the
mixture. The compressed algorithm allows to memory savings as
soon as m + kn

k+n
. N . Since kn . m, this condition is nearly

equivalent to m . N .

5. EXPERIMENTS

5.1. Experimental setup

To evaluate the behavior of our algorithm, we conducted experi-
ments on vectors drawn from a mixture of k isotropic Gaussians with
identity covariance matrices (σ = 1). In each case, we drew weights
uniformly on the simplex1, and we chose the Gaussian means by
drawing random vectors, each entry being drawn from a probability
law of densityN (0, 1).

The experiments were performed in the following way: after the
choice of the probability distribution p, we drew N random vectors
from this probability distribution and computed the empirical sketch
of the distribution in one pass of the data, which was then discarded
from hard memory (see section 5.2). We then applied the reconstruc-
tion algorithm to the sketch to get an approximated mixture p̂. The
random initialization for the reconstruction algorithm is detailed in
section 5.3.

To measure the quality of the reconstruction, we considered a
symmetrized version of the Kullback-Leibler (KL) divergence be-
tween the true mixture and the estimated one, defined by D(p||p̂) +
D(p̂||p), where D denotes the regular KL divergence. To approxi-
mate this divergence, we drewN ′ = 105 points (yi)

N′
i=1 i.i.d. from p

and computed 1
N′
∑N′

i=1

[
ln
(
p(yi)
p̂(yi)

)
+ p̂(yi)

p(yi)
ln
(
p̂(yi)
p(yi)

)]
. We also

considered an approximated Hellinger distance, measured by the

quantity 1 − 1
N′
∑N′

i=1

√
p̂(yi)
p(yi)

. The KL divergence ranges from
0 to +∞ while the Hellinger distance ranges from 0 to 1. In both

1We also performed experiments where all the weights were equal to 1
k

and this didn’t alter the conclusions drawn from the experiments.

Algorithm 3 Proj cone(v,Γ = {u1 . . .uK})
Solve the following convex optimization problem:

a = argmin
β∈RK

+

||v −Uβ||2, with U = [u1, . . . ,uK ].

Return a.

Algorithm 4 Hard threshold(a,Γ = {u1, . . . ,uK}, k)
Let ai1 , . . . , aik be the k highest entries of a.
Return (ai1 , . . . , aik ), {ui1 , . . . ,uik}.

Algorithm 5 Shift support(ẑ,α,Γ = {µ1, . . . ,µk}, k)

Find a local minimum (α′,µ′1, . . . ,µ
′
k) of the function:

Rk × (Rn)k → R+

(β,ν1, . . . ,νk) 7→ ‖ẑ− [Afν1 , . . . ,Afνk ]β‖2,
using a gradient descent algorithm initialized at
α,µ1, . . . ,µk.

Return α′, {µ′1, . . . ,µ′k}.

cases, lower values mean closer distributions.

5.2. Choice of the frequencies

Note that if p is a mixture of probability densities taken in F , then
its Fourier transform decays as exp

(
−σ

2

2
‖ω‖22

)
, giving an upper

bound for the entries of the sketch.
Since we do not want the elements of the sketch to be too small

(they should be informative about p), we chose the frequencies ωj
randomly with a probability law N (0, 1

σ2 Id) (thus proportional to
the upper bound we found for the values of the sketch). Here, since
σ = 1, this law wasN (0, Id).

5.3. Heuristic for random initialization

The search for local minima in algorithm 2 was initialized randomly
by exploiting a measure performed during the construction of the
sketch: during the single pass on the data, the norms of the vectors
are computed and the maximum of the norms R = max

x∈X
||x||2 is

computed. This measure has a negligible effect on the computation
time of the sketch and delimits a ball in which the centers of the
Gaussians are very probably contained.

We performed the random initialization by drawing a direction
uniformly on the unit sphere and multiplying this unit vector by a
scalar uniformly drawn in [0;R].

5.4. Results

Figure 2 visually illustrates the behavior of the algorithm on a sim-
ple mixture of 4 Gaussians in dimension 2. N = 103 points were
drawn from this mixture and used to compute am = 30-dimensional
sketch. As shown in the figure, the parameters are precisely esti-
mated without referring to the initial data. The symmetric KL diver-
gence and Hellinger distance are respectively 0.026 and 0.003.

Figure 3 illustrates the reconstruction quality of our algorithm
in dimension 10 for different values of mixture components k and
sketch sizes m in terms of Hellinger distance. For each sketch size
m ranging from 200 to 2000 with range 200, k was chosen to range
from m/200 to m/10 with step m/200. For each choice of pa-
rameters, 10 experiments were performed and the depicted value
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Fig. 2. Real and reconstructed centroids (respectively represented as
circles and squares) of 4 Gaussians in dimension 2 from 103 points
drawn from the mixture. To estimate the 12 real parameters of the
mixture, the data was compressed to a complex-valued sketch of di-
mension 30, represented to the right as a 60-dimensional real signal.

N
Compressed

KL div. Hell. Mem.
103 0.68± 0.28 0.06± 0.01 0.6
104 0.24± 0.31 0.02± 0.02 0.6
105 0.13± 0.15 0.01± 0.02 0.6

N
EM

KL div. Hell. Mem.
103 0.68± 0.44 0.07± 0.03 0.24
104 0.19± 0.21 0.01± 0.02 2.4
105 0.13± 0.21 0.01± 0.02 24

Table 1. Comparison between our compressed estimation algorithm
and an EM algorithm in terms of precision of the estimation and
memory usage (in megabytes). Experiments were performed with
n = 20, k = 10, m = 1000. In each cell, the value is a me-
dian on 10 experiments with the standard deviation for the precision
measures.

is the Hellinger distance such that 80% of the experiments lead to
a smaller Hellinger distance. We can essentially observe a grad-
ually increasing measure of the Hellinger distance as the number
of mixture components rises. For the considered parameters range,
choosing m = 10kn, i.e., choosing m so that it contains 10 times
more values than the number of parameters to estimate, leads to a
Hellinger distance smaller than 0.03 for 80% of the cases.

Table 1 compares our algorithm with a standard EM algorithm
in the case where n = 20, k = 10, m = 1000 for values of dataset
size N ranging from 103 to 105. For each case, we can see that the
precision of the estimation increases with the number of samples.
In the compressed case, this can be explained by the fact that the
components of the sketch are better estimated with more points. We
notice that the memory used for EM is proportional to the number
N of samples in the dataset, while the memory required by the com-
pressed algorithm does not depend on this parameter, which leads
to a substantial improvement in memory usage for N ≥ 104. Even
with this reduced memory cost, the compressed algorithm is able to
provide a precision comparable to the precision of the EM algorithm.

n=10, Hell. for 80%

sketch size m

k*
n/

m
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Fig. 3. Quality of reconstruction in dimension n = 10, with N =
104 points, measured as a Hellinger distance (darker is better). Each
square corresponds to 10 experiments, and the depicted values are
the values of the Hellinger distance under which 80% of performed
experiments are placed.

6. CONCLUSION AND OUTLOOKS

We proposed a framework for density estimation exploiting a sketch
of the data instead of the data itself. This sketch is computed in
one pass of the data, which can be discarded on the fly, leading to
memory savings in the case of numerous data and to privacy-keeping
estimation, since the individual data points cannot be recovered from
the sketch. We detailed how this framework can be instantiated for
the estimation of a mixture of isotropic Gaussians by deriving an
algorithm by analogy with IHT. We experimentally showed that it
provides precise reconstruction compared to standard EM while hav-
ing memory requirements that do not depend on the number of data
vectors.

Future work includes generalization to non-isotropic Gaussians,
richer choice of sketching functions and other choices of initializa-
tion methods for the search of local minima, as well as a theoretical
understanding of the well-posedness and stability of the considered
problems.

On the experimental side, it would be interesting to see how
other methods for large-scale learning such as online EM [11] or
stochastic gradient [12] can also be compared with our framework.
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