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ABSTRACT

We consider the recovery of a finite stream of Dirac pulses at

nonuniform locations, from noisy lowpass-filtered samples.

We show that maximum-likelihood estimation of the un-

known parameters can be formulated as structured low rank

approximation of an appropriate matrix. To solve this diffi-

cult, believed NP-hard, problem, we propose a new heuristic

iterative algorithm, based on a recently proposed splitting

method for convex nonsmooth optimization. Although the al-

gorithm comes, in absence of convexity, with no convergence

proof, it converges in practice to a local solution, and even to

the global solution of the problem, when the noise level is not

too high. It is also fast and easy to implement.

Index Terms— Recovery of Dirac pulses, finite rate of

innovation, maximum likelihood estimation, structured low

rank approximation, optimization, Cadzow denoising

1. INTRODUCTION AND PROBLEM

FORMULATION

Reconstruction of signals lying in shift-invariant spaces, in-

cluding bandlimited signals and splines, has received long at-

tention in sampling theory. Recently, analog reconstruction

from discrete samples has been enlarged to a broader class of

signals, with so-called finite rate of innovation (FRI), beyond

the classical framework rooted in Shannon’s work [1, 2, 3].

In this paper, we focus on the retrieval of a finite stream of

Dirac pulses from uniform, noisy, lowpass-filtered samples,

a problem at the heart of the FRI theory [4, 1, 5, 6]. More

precisely, the sought-after unknown signal s consists of K
Dirac pulses in the finite interval [0, τ [, where the real τ > 0
and the integer K ≥ 1 are known; that is

s(t) =
K∑

k=1

akδ(t− tk), ∀t ∈ [0, τ [, (1)
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where δ(t) is the Dirac mass distribution, {tk}Kk=1 are the un-

known distinct locations in [0, τ [, and {ak}Kk=1 are the un-

known real nonzero amplitudes. The goal is to obtain esti-

mates of these 2K values, which forms a deterministic (non-

Bayesian) parametric estimation problem. The available data

are, classically, linear uniform noisy measurements {vn}
N−1
n=0

on s, of the form

vn =

∫ τ

0

s(t)ϕ
(nτ
N

− t
)
dt+ εn (2)

=

K∑

k=1

akϕ
(nτ
N

− tk

)
+ εn, ∀n = 0, . . . , N − 1, (3)

where ϕ(t) is the sampling function and the εn ∼ N (0, σ2)
are independent random realizations of Gaussian noise. Note

that other noise models could be considered as well, by

changing the cost function in eqns. (5), (10), (14) below.

The questions of the choice of the function ϕ and of the

number N of measurements allowing perfect reconstruction,

in absence of noise, has been addressed in the literature [5, 6,

7]. In a nutshell, the condition N ≥ 2K + 1, which we here-

after assume to be true, is necessary and sufficient, provided

that ϕ satisfies some constraints in Fourier domain. In this

work, as the emphasis is on appropriately handling the pres-

ence of noise, we adopt the simplest choice of the Dirichlet

sampling function (which amounts to periodizing the signal s
on the real line before sampling it with the sinc function):

ϕ(t) =
sin(Nπt/τ)

N sin(πt/τ)
=

1

N

M∑

m=−M

ej2πmt/τ , ∀t ∈ R, (4)

where hereafter we assume, without loss of generality and

only to simplify the notations, that N is odd of the form

N = 2M + 1. The extension of the setting to the reconstruc-

tion of pulses with real shape, instead of the ideal Dirac distri-

bution, is of obvious practical interest in ultrawideband com-

munications [2] or to detect impulsive signals in biomedical

applications [5]. This extension, or equivalently the choice of

another sampling function ϕ, can be done without difficulty,

as detailed in [5].
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The paper is organized as follows. In Sect. 2, we for-

mulate the maximum likelihood estimation problem and in

Sect. 3, we show that it amounts to a low rank matrix approx-

imation problem. The new algorithm to solve it is presented

in Sect. 4.

2. MAXIMUM LIKELIHOOD ESTIMATION OF THE

PARAMETERS

A natural approach to solve parametric estimation problem is

maximum likelihood (ML) estimation; it consists in selecting

the model which is the most likely to explain the observed

noisy data. In our case, since we have supposed the noise to

be Gaussian, this corresponds to solving the nonlinear least-

squares problem [8]:

Find (t̃, ã) = argmin
t′∈[0,τ [K,a′∈RK

N−1∑

n=0

∣∣∣∣∣vn −
K∑

k=1

a′kϕ
(nτ
N

− t′k

)∣∣∣∣∣

2

.

(5)

Almost surely, the solution to this problem is unique, the ob-

tained amplitudes ã = {ãk}Kk=1 are nonzero, and the obtained

locations t̃ = {t̃k}Kk=1 are distinct.

Now, applying the discrete Fourier transform to the vector

of measurements yields the Fourier coefficients defined by

v̂m =

N−1∑

n=0

vne
−j2πmn/N , ∀m = −M, . . . ,M. (6)

We define the Fourier coefficients {ε̂m}Mm=−M similarly.

Combining (3) and (4), we get, for every n = 0, . . . , N − 1,

vn − εn =
1

N

K∑

k=1

ak

M∑

m=−M

ej2πm(n/N−tk/τ) (7)

=
1

N

M∑

m=−M

ej2πmn/N

(
K∑

k=1

ake
−j2πmtk/τ

)
. (8)

We recognize the form of the inverse discrete Fourier trans-

form. Thus, by identification, we obtain

v̂m =

K∑

k=1

ake
−j2πmtk/τ + ε̂m, ∀m = −M, . . . ,M. (9)

Since the inverse discrete Fourier transform is unitary, up to a

constant, the problem (9) can be rewritten as [8]:

Find (t̃, ã) = argmin
t′∈[0,τ [K,a′∈RK

M∑

m=−M

∣∣∣∣∣v̂m −
K∑

k=1

a′ke
−j2πmt′

k
/τ

∣∣∣∣∣

2

.

(10)

We remark that (10) takes the form of a spectral estima-

tion problem, which consists in retrieving the parameters of a

sum of complex exponentials from noisy samples [9]. The

optimal statistical properties of ML estimation for spectral

estimation are well known [10, 11]. However, solving the

problem (10) is a difficult task, as the cost function has a mul-

timodal shape with many local minima [12, 13]. Stochastic

optimization approaches can be applied [14, 15, 8], but due to

the combinatorial nature of the problem, their computational

cost blows up even for moderate values of K and N . Sev-

eral methods have been proposed to find a local minimum of

the cost function in (10), e.g. [16, 17, 18]. They proceed by

iteratively refining an initial estimate of the solution, which

has to be already of good quality. A major advantage of the

approach developed in this paper is that it does not neces-

sitate any initialization. We also note that, when N ≫ K
and the locations tk are not too close to each other, classical

spectral estimation techniques like MUSIC [19] and ESPRIT

[20] can be used; they are fast but statistically suboptimal. In

this work, we investigate our problem in its whole generality,

without any simplifying assumption.

3. THE ANNIHILATION PROPERTY:

REFORMULATION OF EQN. (10) AS A MATRIX

APPROXIMATION PROBLEM

Let us assume temporarily that there is no noise, i.e. ε̂m = 0
in (9). Then, the sequence of Fourier coefficients {v̂m}Mm=−M

can be annihilated [21]; that is, its convolution with the se-

quence {hk}Kk=0 is identically zero:

K∑

k=0

hkv̂m−k = 0, ∀m = −M +K, . . . ,M, (11)

where the Z-transform of the annihilating filter is defined, up

to a constant, as

H(z−1) =

K∑

k=0

hkz
k =

K∏

k=1

(z − ej2πtk/τ ). (12)

In matrix form, the annihilation property is




v̂−M+K · · · v̂−M

...
. . .

...
...

. . .
...

v̂M · · · v̂M−K




︸ ︷︷ ︸
TK




h0

...

hK


 =




0
...

0


 . (13)

Let us define, for every integerP = K, . . . ,M , the Toeplitz—

i.e. with constant values along its diagonals—matrix TP , of

size N − P × P + 1, obtained by arranging the values

{v̂m}Mm=−M in its first row and column; TK is depicted in

(13). Then, the existence of an annihilating filter of size

K + 1 for the sequence {v̂m}Mm=−M is completely equiva-

lent to the property that TP has rank at most K , for every

P = K, . . . ,M .
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Hence, turning back to the case when noise is present in

the data, we can recast the estimation problem (10) as the

following matrix approximation problem:

Find T̃P ∈ argmin
T′∈CN−P×P+1

‖T′ −TP ‖
2
w

s. t. T
′ is Toeplitz and rank(T′) ≤ K, (14)

for some chosen P ∈ K, . . . ,M , where the weighted Frobe-

nius norm of a matrix A = {ai,j} ∈ C
N−P×P+1 is defined

by

‖A‖2w =

N−P∑

i=1

P+1∑

j=1

wi,j |ai,j |
2, (15)

where wi,j is the inverse of the size of the diagonal going

through the position (i, j):

wi,j =





1/(i− j + P + 1) if i− j ≤ 0,
1/(P + 1) if 1 ≤ i− j ≤ N − 2P − 1,
1/(j − i+N − P ) if i− j ≥ N − 2P.

(16)

After the structured low rank approximation (SLRA) [22]

problem (14) has been solved, the procedure to recover the

estimates of the parameters is the following [1]. First, reshape

the obtained Toeplitz matrix T̃P to a Toeplitz matrix T̃K of

size N −K ×K + 1; that is,

T̃K =




ṽ−M+K · · · ṽ−M

...
. . .

...
...

. . .
...

ṽM · · · ṽM−K




. (17)

Second, compute the right singular vector h̃ = {h̃k}Kk=0 of

T̃K corresponding to the singular value 0. Since, almost

surely, T̃K has rank exactly K , h̃ is unique, up to a con-

stant. Third, compute the roots {z̃k}Kk=1 of the polynomial∑K
k=0 h̃kz

k; the estimates {t̃k}Kk=1 of the locations are given

by

t̃k =
τ

2π
arg[0,2π[(z̃k), ∀k = 1, . . . ,K. (18)

Fourth, given the estimates {t̃k}Kk=1, the ML estimates

{ãk}Kk=1 of the amplitudes are obtained by solving the linear

system

Ũ
H
Ũã = Ũ

H
v̂, (19)

where v̂ = [v̂−M · · · v̂M ]T, ·H denotes the Hermitian trans-

pose, and

Ũ =




ej2πMt̃1/τ · · · ej2πMt̃K/τ

...
...

...

e−j2πMt̃1/τ · · · e−j2πMt̃K/τ


 . (20)

Thus, the process consists in denoising the matrix TP , or

equivalently the data {vn}
N−1
n=0 , by finding the closest matrix

consistent with the model’s structure, from which the param-

eters are estimated. In absence of noise, the parameters are

perfectly recovered. The SLRA problem (14), which consists

in projecting a matrix in the intersection of a linear subspace

and a nonconvex manifold, is believed NP-hard [23, 24]. So,

at first glance, we just have replaced the difficult problem (10)

by the SLRA problem of same difficulty. However, there are

several advantages with the latter. First, the estimation of the

locations is decoupled from that of the amplitudes. Second,

the initialization problem disappears: an iterative algorithm

to solve (14) proceeds directly, with the noisy matrix TP as

initial estimate of the solution T̃P ; moreover, for a low noise

level, an algorithm converging to a local solution will find the

global solution T̃P , as TP , T̃P and the true noiseless ma-

trix will correspond to the same catchment area of the cost

function in (14).

We note that the obtained estimates {(t̃k, ãk)}Kk=1 coin-

cide with the ML estimates, solution to (10), only if the roots

{z̃k}Kk=1 are distinct and all on the complex unit circle. This

is the case in practice, with high probability, if the noise level

is not too high. Indeed, the matrices TP and T̃P are centro-

Hermitian, i.e. their entries satisfy v̂−m = v̂∗m and ṽ−m =
ṽ∗m, for everym, where ·∗ denotes complex conjugation. Con-

sequently, the polynomial
∑K

k=0 h̃kz
k is self-inversive [25],

so that its roots {z̃k}Kk=1 are either on the complex unit cir-

cle or come by pairs with same complex phase and oppo-

site amplitudes. In essence, when moving continuously the

variables {vn}
N−1
n=0 from their noiseless version to their ac-

tual noisy version, the corresponding estimated roots {z̃k =

ej2πt̃k/τ}Kk=1 deviate continuously from the true roots {zk =
ej2πtk/τ}Kk=1, while remaining on the complex unit circle;

only if the perturbation is large enough, two distinct roots

(z̃k, z̃k′) will possibly merge and then split in a pair (z̃k, z̃k′ =
1/z̃∗k) on both sides of the unit circle, yielding t̃k = t̃k′ .

We now briefly tackle the state of the art for solving

SLRA problems, which have a wide range of applications

[22, 26]. To our knowledge, the only publicly available soft-

ware package for SLRA is the one currently in development

by I. Markovsky [27]. However, it only handles real-valued,

and not complex-valued, matrices. On the other hand, the

popular heuristic Cadzow denoising method [28] is promoted

in [1, 5] for our problem of recovering Dirac pulses. This

algorithm denoises the matrix TP iteratively: at each itera-

tion, the matrix is replaced by its closest, in Frobenius norm,

matrix of rank at most K , and then the obtained matrix is

replaced by its closest Toeplitz matrix. If the algorithm con-

verges, which is not guaranteed [29], it does so to a Toeplitz

matrix of rank at most K , which is not even a local minimizer

of the cost function ‖ · −TP ‖
2
w in (14) [12, 13]. In the next

section, we propose a new algorithm to compute a local so-

lution of the SLRA problem (14), which thus improves upon

Cadzow denoising, for essentially the same complexity.
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4. A NEW ITERATIVE OPTIMIZATION METHOD

FOR SLRA

We consider the generic optimization problem:

Find x̃ ∈ argmin
x∈H

F (x) s.t. x ∈ Ω1 ∩Ω2, (21)

whereH is a real Hilbert space of finite dimension,Ω1 and Ω2

are two closed subsets of H, and F : H → R is a convex and

differentiable function with β-Lipschitz continuous gradient,

for some β > 0; that is, ‖∇F (x′) − ∇F (x)‖ ≤ β‖x − x′‖,

∀x, x′ ∈ H.

We denote by PΩ : H → Ω the closest-point projec-

tion onto a closed set Ω ⊂ H; that is, for every x ∈ H,

PΩ(x) ∈ argminx′∈Ω ‖x − x′‖. If Ω is convex, the mini-

mizer in this definition is unique. The proposed algorithm to

solve (21) is the following:

Proposed algorithm. Choose the parameters µ > 0,

γ ∈ ]0, 1[, and the initial estimates x(0), s(0) ∈ H. Then

iterate, for every i ≥ 0,∣∣∣∣
x(i+1) = PΩ1

(
s(i) + γ(x(i) − s(i))− µ∇F (x(i))

)

s(i+1) = s(i) − x(i+1) + PΩ2
(2x(i+1) − s(i))

.

The convergence result is a corollary of more general

results derived in [30]:

Theorem 1. In (21), suppose that (i) a solution exists; (ii)
the sets Ω1 and Ω2 are convex; (iii) ri(Ω1) ∩ ri(Ω2) 6= ∅,

where ri denotes the relative interior. In the proposed al-

gorithm, suppose that (iv) 2γ > βµ. Then, the sequence

(x(i))i∈N converges to some element x̃ solution to the prob-

lem (21).

In absence of convexity, this result does not apply, so

that we will use the method as a heuristic. The SLRA prob-

lem (14) can be recast as an instance of (21) as follows:

H = CN−P×P+1 is the real Hilbert space of complex-

valued matrices of size N − P × P + 1 with centro-

Hermitian symmetry, endowed with Frobenius inner product

〈X,X′〉 =
∑

i,j xi,jx
′∗
i,j ; Ω1 is the closed nonconvex subset

of H of matrices with rank at most K; PΩ1
corresponds to

SVD truncation, according to the classical Schmidt-Eckart-

Young theorem [31, theorem 2.5.3]: if a matrix X has

SVD X = LΣR
H, then PΩ1

(X) is obtained by setting

to zero the singular values in Σ, except the K largest; Ω2

is the linear subspace of H of Toeplitz matrices; PΩ2
sim-

ply consists in averaging along the diagonals of the matrix;

F (X) = 1
2‖X − TP ‖2w, with ∇F (X) = W ◦ (X − TP ),

where ◦ is the entrywise (Hadamard) product and the entries

{wi,j} of the matrix W are defined in (16), with Lipschitz

constant β = max({wi,j}) = 1.

The proposed algorithm almost always converges: only

when the noise level is very high, it possibly gets trapped in
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Fig. 1. Plot in log-log scale of the mean squared periodic

error min
(
(t̃1 − t1)

2
τ + (t̃2 − t2)

2
τ , (t̃1 − t2)

2
τ + (t̃2 − t1)

2
τ

)
,

where (x)τ =
(
(x + τ

2 ) mod τ
)
− τ

2 , for the estimation of

the locations of K = 2 Dirac pulses, averaged over 10,000

noise realizations for every signal-to-noise ratio (SNR). The

true parameters were t1 = 0.42, t2 = 0.52, a1 = a2 = 1,

with τ = 1, N = 11. The proposed algorithm is compared

to Cadzow denoising, with P = M = 5, µ = 1, γ = 0.51µ,

x(0) = s(0) = TP . Both algorithms converge within machine

precision in about 100 iterations. An upper bound for the error

is given by the naive estimator, which sets t̃1 and t̃2 randomly

and uniformly in [0, τ [.

a cycle; but in that case, running again the algorithm with

lower values of µ and γ seems sufficient to obtain conver-

gence. When the algorithm converges, it does so to a matrix

in Ω1∩Ω2, which is a local minimizer of the cost function F .

In comparison with Cadzow denoising, we obtain estimation

errors for the locations of the Dirac pulses, which are about

10% lower in average. An example of experimental setting

with corresponding results is depicted in Fig. 1. More results

are shown in the extended version of this article [32].

5. CONCLUSION

We showed that the maximum-likelihood estimation of the

parameters of Dirac pulses from noisy lowpass-filtered sam-

ples can be recast as a structured low-rank approximation

problem. We proposed a new heuristic optimization algo-

rithm, which provides a local solution of the difficult non-

convex problem. Preliminary results show that it outperforms

the state-of-the-art approach based on Cadzow denoising,

for same ease of implementation and complexity, essen-

tially one SVD per iteration. More in-depth analysis of the

performances is currently led by the authors. A Matlab im-

plementation is available on the webpage of the first author.
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