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ABSTRACT
We present an efficient algorithm for computing sparse rep-
resentations whose nonzero coefficients can be divided into
groups, few of which are nonzero. In addition to this group
sparsity, we further impose that the nonzero groups them-
selves be sparse. We use a nonconvex optimization approach
for this purpose, and use an efficient ADMM algorithm to
solve the nonconvex problem. The efficiency comes from us-
ing a novel shrinkage operator, one that minimizes nonconvex
penalty functions for enforcing sparsity and group sparsity si-
multaneously. Our numerical experiments show that combin-
ing sparsity and group sparsity improves signal reconstruction
accuracy compared with either property alone. We also find
that using nonconvex optimization significantly improves re-
sults in comparison with convex optimization.

Index Terms— Sparse representations, group sparsity,
shrinkage, nonconvex optimization, alternating direction
method of multipliers

1. INTRODUCTION

Sparse representations have developed into an important tool
for signal processing and classification over the past decade.
These methods are based on the assumption that signals of in-
terest have a sparse representation, that is, a representation as
a linear combination with only a few nonzero entries, of the
columns in a predefined (or learned) dictionary matrix. It is
often the case, however, that additional structure can be ex-
pected in the support of the nonzero elements in such a repre-
sentation. A group-sparse vector can be divided into groups of
components such that few groups contain nonzero values, but
groups that do are not necessarily sparse. A closely related no-
tion, sometimes called joint sparsity, is that of a set of sparse
vectors having the union of their supports be sparse. Putting
such vectors into a matrix as columns, the matrix will have
few nonzero rows, while nonzero rows need not be sparse.
These structured sparse representations are typically obtained
by replacing the problem

min
x
α‖x‖1 + 1

2‖Φx− y‖22 (1)
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with

min
x
α

M∑
i=1

‖x[i]‖2 + 1
2‖Φx− y‖22, (2)

where x[i] is the ith group of x. A number of theoretical
results regarding this type of decomposition have been de-
rived [1–3], with evidence that it can provide improved per-
formance over simple `1 regularization, particularly in classi-
fication tasks [4–7].

In some cases, however, further refinement can be ben-
eficial. While nonzero components may be clustered into
groups, the nonzero groups may also be sparse. In such a set-
ting, we still wish to enforce sparsity, while simultaneously
encouraging group sparsity. This goal can be achieved by the
problem

min
x
α‖x‖1 + β

M∑
i=1

‖x[i]‖2 + 1
2‖Φx− y‖22. (3)

This optimization problem has been applied in low-dimen-
sional nonlinear signal modeling [8], and has been shown to
provide improved performance in some classification [9] and
source separation problems [10].

All of these papers used convex optimization to enforce
the sparse-and-group-sparse model. Motivated by many pre-
vious results in compressive sensing showing that improved
performance can be obtained by using nonconvex optimiza-
tion instead [11–14], in this paper we enforce both sparsity
and group sparsity using nonconvex regularization. The for-
mer is a slight modification of a regularization derived in [13,
14], which is designed to be minimized using a computation-
ally efficient shrinkage operator. In this work, we use a shrink-
age which jointly solves a nonconvex optimization problem
for enforcing our model. We present in Sec. 2 the ADMM al-
gorithm that will exploit our shrinkage-based approach, after
which our new shrinkage and corresponding penalty function
are discussed in Section 3. We show the value of our approach
via numerical experiments, presented in Sec. 4.

2. ADMM ALGORITHM

In this section we discuss the alternating direction, method
of multipliers (ADMM) approach [15–18], which uses vari-
able splitting to decompose our problem into easily solvable
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subproblems. For notational simplicity we present the joint
sparsity variant of (3), in which the groups are rows of a co-
efficient matrix in the multiple measurement vector context,
though it is easily extended to the group sparsity problem:

min
X

α‖X‖1 + β

M∑
i=1

‖Xi‖2 + 1
2‖ΦX − Y ‖

2
F . (4)

The N columns of Y each contain a signal in RL, for which
sparse representations are sought using the L×M dictionary
Φ via coefficient vectors stored as columns in the M × N
matrix X . Here ‖ · ‖1 is the entrywise `1 norm, ‖ · ‖F is the
Frobenius (entrywise `2) norm, and the Xi are rows ofX . The
first term promotes sparsity, while the second promotes group
sparsity in the sense of few rows having nonzero entries.

We introduce an auxiliary variable W for the splitting:

min
W,X

α‖W‖1+β

M∑
i=1

‖Wi‖2+ 1
2‖W−X‖

2
F + 1

2‖ΦX−Y ‖
2
F .

(5)
We can regard W as a proxy for X , and the new third term
a relaxation of the equality constraint W = X . We proceed
by alternately fixing one variable and solving for the other
(i.e., alternating directions), and iterating. With fixed W , the
X subproblem is quadratic, becoming a simple linear equa-
tion:

(I + ΦTΦ)X = W + ΦTY. (6)

Note that the system matrix remains fixed throughout. With
fixed X , we have the following subproblem for W :

min
W

α‖W‖1 + β

M∑
i=1

‖Wi‖2 + 1
2‖W −X‖

2
F . (7)

It turns out that this can be solved very easily, by means of
shrinkages.

Definition 1. Define shrinkage mappings S1 and S1 from
RN × R+ to RN by

S1(x, α)i =
xi
|xi|

max{0, |xi| − α}, (8)

S1(x, α) =
x

‖x‖2
max{0, ‖x‖2 − α}; (9)

where both expressions are taken to be zero when the second
factor is zero.

The shrinkage (8) is known as soft thresholding. Its occur-
rence in many algorithms related to sparsity is due to it being
the proximal mapping for the `1 norm:

arg min
w

α‖w‖1 + 1
2‖w − x‖22 = S1(x, α). (10)

Proposition 2. The solution to (7) is given row-wise by

Wi = S1(S1(Xi, α), β). (11)

It has previously been noted [8,10] that (7) has an explicit
solution in terms of shrinkages, but the particular expression
of (11) is, to the best of our knowledge, new. Prop. 2 is a
special case of Thm. 8 below.

The last ingredient is to enforce the equality of W and X
at convergence, using the method of multipliers. We introduce
a dual variable (or Lagrange multiplier) Λ, which we update
at each iteration by adding the residual X −W :

min
W,X

α‖W‖1 + β

M∑
i=1

‖Wi‖2

+ 1
2‖W −X − Λ‖2F + 1

2‖ΦX − Y ‖
2
F . (12)

3. SHRINKAGE FOR NONCONVEX MINIMIZATION

We now generalize the approach of the previous section, to
bring the benefits of nonconvex optimization to our problem.

Definition 3. Let p ∈ R. Define shrinkage mappings Sp and
Sp from RN × R+ to RN by

Sp(x, α)i =
xi
|xi|

max{0, |xi| − α2−p|xi|p−1}, (13)

Sp(x, α) =
x

‖x‖2
max{0, ‖x‖2 − α2−p‖x‖p−12 }; (14)

where both expressions are taken to be zero when the second
factor is zero.

We now seek to generalize (10) to the general case, with
the aim of applying it with p < 1:

Proposition 4. Let p ∈ R, α > 0. Then there is a real-valued
function G such that for any x ∈ RN ,

arg min
w

αG(w) + 1
2‖w − x‖22 = Sp(x, α), (15)

with G(w) =
∑N
i=1 g(wi) for some scalar function g.

The proof is essentially the same as in [14], with only
minor changes required due to the different power of α in
our shrinkage (13). We emphasize that for p ≤ 1, the mini-
mizer given by Prop. 4 is unique and global, nonconvexity of
G notwithstanding, as αG(w) + ‖w‖22/2 is strictly convex.

Except for special values of p, we are unable to write
G explicitly. See Fig. 1 for numerically-computed plots; the
function g(w) grows like |w|p/p+C for large |w| and someC
(or log |w|+C for p = 0). However, the point is not to be able
to compute G efficiently, it is to solve efficiently optimization
problems having G as a penalty function. Our ADMM ap-
proach in Sec. 2 will be able to use the shrinkage property of
Prop. 4 for this purpose.

We can also prove indirectly several properties of g (and
hence G). The proof of the following Lemma follows as in
[14, Prop. 3]:
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Fig. 1. Plots of the function g of Prop. 4, using α = 1. The
smaller the value of p, the slower the growth of g, with g being
bounded above when p < 0.

Lemma 5. The function g of Prop. 4 is radial, radially in-
creasing, continuous, differentiable except at 0 with ∂g(0) =
[−1, 1], concave on (−∞, 0) and (0,∞), and satisfies the tri-
angle inequality.

Note that the subdifferential of the nonconvex function g
is in the sense of [19, Def. 8.3.(a)]. We also need the following
property:

Lemma 6. The function G of Prop. 4 is subdifferentially reg-
ular.

See [19, Def. 7.2.5] for a definition of subdifferential
regularity. A rough description is G “locally” majorizes its
supporting hyperplanes, doing so in an infinitesimal sense at
points of differentiability, while at 0 majorizing lines with
slopes in (−1, 1) on a neighborhood of 0. The importance
of Lemma 6 for us is given by [19, Thm. 10.1]: although G
is nonconvex, first-order optimality conditions for our opti-
mization problems involving G will not only be necessary for
a local minimizer, they will be sufficient as well.

We now establish the corresponding property for Sp,
which is known for p = 1 [20, Lemma 3.3]:

Proposition 7. Let g be as in Prop. 4. Then

arg min
w

αg(‖w‖2) + 1
2‖w − x‖22 = Sp(x, α). (16)

Proof. Since αg(‖w‖2) is radial and increasing in ‖w‖2, the
minimizer will have the form w = tx for some t ∈ [0, 1]. Our
optimization problem becomes

min
t∈[0,1]

αg(t‖x‖2) + 1
2‖tx− x‖22. (17)

Since ‖tx − x‖2 = (t − 1)‖x‖2 = t‖x‖2 − ‖x‖2, letting
s = t‖x‖2 = ‖w‖2 we obtain

min
s∈[0,‖x‖2]

αg(s) + 1
2 (s− ‖x‖2)2. (18)

By Prop. 4 with ‖x‖2 in place of x, the solution is s =
max{0, ‖x‖2 − α2−p‖x‖p−12 }. Since w = sx/‖x‖2, the re-
sult follows.

The following theorem generalizes Prop. 2 to the case of
general p:

Theorem 8. Let X be an M × N matrix, and let α, β > 0.
There are functions Gα,p, gβ,q such that a local minimizer of
the optimization problem

min
W

αGα,p(W ) + β

M∑
i=1

gβ,q(‖Wi‖2) + 1
2‖W −X‖

2
F (19)

is given row-wise by

Wi = Sq(Sp(Xi, α), β). (20)

Proof. The optimization problem (19) is row-separable, so
we consider the case of x ∈ RN , let w = Sq(Sp(x, α), β),
and show that this is a local minimizer of

min
w

αGα,p(w) + βgβ,q(‖w‖2) + 1
2‖w − x‖22. (21)

Denote v = Sp(x, α). We define gβ,q as in Prop. 7 with β in
place of α and q in place of p.

We consider first the case that w = 0, which is equiv-
alent to ‖v‖2 ≤ β. We define Gα,p as in Prop. 4; then v
is the (unique, global) minimizer of the left-side of (15). By
Lemma 6, it suffices to show that the first-order optimality
conditions hold for (21), in this case

0 ∈ α∂Gα,p(0) + βgβ,q(0)∂‖ · ‖2(0)− x. (22)

This is equivalent to the existence of y ∈ [−1, 1]N and z
with ‖z‖2 ≤ 1 such that x = αy + βz. Now by first-order
optimality and the definition of v and Gα,p,

0 ∈ α∂Gα,p(v) + v − x. (23)

Recall that ∂gα,p(0) = [−1, 1]; by concavity, |g′α,p(t)| ≤ 1

for t 6= 0 also. Thus there is y ∈ [−1, 1]N such that x =
αy+v; since ‖v‖2 ≤ β by assumption, the proof is complete
for the case of w = 0.

Now assume w 6= 0, so ‖v‖2 > β. By definition of Sq ,
we have that w = tv for some t > 0, namely t = 1 −
β2−q‖v‖q−22 . Define Gα,p as in Prop. 4 with tα in place of α.
We need to show that

0 ∈ α∂Gα,p(w) + βg′β,q(‖w‖2)
w

‖w‖2
+ w − x. (24)

Since w = Sq(v, β), by Prop. 7 we have that w minimizes
βgβ,q(‖w‖2) + ‖w − v‖22, so that

βg′β,q(‖w‖2)
w

‖w‖2
+ w − v = 0. (25)

By substituting (25) into (24), it remains only to show that
0 ∈ α∂Gα,p(w) + v − x. By applying Prop. 4 to our choice
of G with tx in place of x, we obtain that

min
u
tαGα,p(u) + 1

2‖u− tx‖
2
2 (26)
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is solved by

u = Sp(tx, tα) =
tx

|tx|
max{0, |tx| − (tα)2−p|tx|p−1}

= tSp(x, α) = tv = w,

(27)

where the vector operations are to be understood component-
wise. First-order optimality therefore tells us that

0 ∈ tα∂Gα,p(w) + tv − tx. (28)

Dividing through by t completes the proof.

Now we are ready to state our proposed algorithm. The
following is our generalization of (12):

min
W,X

αGα,p(W ) + β
M∑
i=1

gβ,q(‖Wi‖2)

+ 1
2‖W −X − Λ‖2F + 1

2‖ΦX − Y ‖
2
F . (29)

We obtain our algorithm by solving the X and W subprob-
lems and updating Λ at each iteration:

Input: signals Y , dictionary Φ, parameters α, β
Precompute: factorization of I + ΦTΦ
Initialize: W0 = Λ0 = 0
for number of iterations do

(I + ΦTΦ)Xn = Wn−1 − Λn−1 + ΦTY
Wi

n = Sq(Sp(Xi
n, α), β) for each i

Λn = Λn−1 +Xn −Wn

end
Output: Sparse, group-sparse coefficient vectors X

Algorithm 1: ADMM algorithm for sparsity with group
sparsity

4. NUMERICAL RESULTS

We construct a synthetic test problem as follows. A random
dictionary Φ of size L×M is constructed from i.i.d., standard
normal values. J of the M columns in the dictionary are ran-
domly selected, with a uniform distribution, to be allowed to
be associated with non-zero coefficients in the randomly gen-
erated coefficient M × N matrix X̂ . For each column in X̂ ,
K of the allowed J entries are randomly selected, with a uni-
form distribution, to have nonzero values, and these nonzero
values are assigned from a standard normal distribution. A
reference signal is defined as Ŷ = ΦX̂ , and a test signal Y is
constructed by adding Gaussian white noise of standard de-
viation σ. For all the results reported here, L = 512,M =
2048,K = 8, J = 64, N = 64, and σ = 5.0.

We compare a number of variants of (29) in reconstruct-
ing X̂ given Y , using different combinations of values of p
and q, as well as omitting either the sparsity penalty or the

group-sparse penalty (or equivalently, setting α or β to be
zero in Alg. 1). When parameters α or β are not explicitly
fixed to be zero, we compute the optimal parameter values
for each problem by performing a search for those values that
minimize the error in reconstructing X̂ . A new random X̂ ,
Ŷ , and Y are then generated, and the various optimizations
are compared using the optimal parameters from the previous
stage. The results of these experiments are presented in Ta-
ble 1. Note that the best performance for a convex problem
(p = 1, q = 1) is obtained when both α and β are nonzero,
and that the corresponding problems that are nonconvex in
both regularization terms exhibit significantly improved per-
formance (and the best performance is also achieved when
both α and β are nonzero).

p q SNR (dB)
1 N/A 5.39

N/A 1 -0.12
1 1 6.33

1/2 1 7.70
1 1/2 6.60

1/2 1/2 8.88
−1/2 N/A 6.61
−1/2 1 8.52

N/A −1/2 5.01
1 −1/2 8.54

−1/2 −1/2 9.76

Table 1. SNR of recovered coefficients for choices of p and q
(“N/A” means that the corresponding penalty term was omit-
ted).

5. CONCLUSIONS

We have developed an ADMM algorithm for finding group-
sparse representations having sparse groups using noncon-
vex regularization. With regard to prior work, a sparse-group,
group sparse approach was used in [8, 10], but using con-
vex optimization. An ADMM approach for group sparsity
was developed in [18]; this algorithm can be considered a
special case of the algorithm presented here with p = 1,
q = 1, and α = 0. A nonconvex approach for group sparsity,
using a difference-of-convex-functions algorithm, has previ-
ously been proposed [21], but without enforcing sparsity of
nonzero groups.

In the numerical experiments presented here we have
shown that minimization of the nonconvex functional with
terms for both sparse groups and group-sparsity can provide
significantly better performance than either the convex func-
tional with both terms, or a nonconvex functional with only
one of these terms.
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